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Abstract: In eCommerce applications with heterogeneous traffic, which typically run on execution 
environments where resources are shared with other applications, being able to dynamically adapt to 
the application workload in real time is crucial for proper self-management and business efficiency. 
The AUGURES platform has recently introduced a novel approach to deal with server overload 
situations, based on the prioritization of sessions according to the expected revenue that the session is 
likely to generate. However, by denying access to exceeding low priority users, the website may be 
loosing potential customers, while there might be other resources available in the market of the 
execution environment, be it a server, a server farm, or a grid. This paper presents an extension of the 
AUGURES architecture with a simple policy-based autonomous bidding agent that generates 
automated bids for the extra resources needed to execute the transactions that have been refused by 
the server due to overload. 
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1 Introduction 

During the recent years there have been important changes in the way eCommerce websites work. 
First, there has been a shift from originally serving mainly static content to fully dynamic websites. 
Second, the typical execution environments are evolving from a scenario where each company used 
to maintain their own servers –or at least they had dedicated servers hosted by an external service 
provider- to a shared hosting scenario. In shared hosting, applications even from different companies 
share resources which are allocated dynamically. On the other hand, while the traditional bottleneck 
of the web has traditionally been network bandwidth, dynamic applications place a huge demand on 
CPU power. Not only web programming languages have become more complex over the years, but 
also user requirements. Websites now rely on technologies such as AJAX to make pages more 
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interactive, XML-based web services to exchange B2B information among companies, and SSL for 
security. While these technologies improve the user experience and privacy, they also increase the 
demand for CPU power. Under these resource-intensive conditions an efficient management of CPU 
time is crucial, since it can dramatically reduce the cost of ownership. An attractive solution is to 
make the system components able to manage themselves (Cheliotis and Kenyon, 2003). This can be 
solved using proposals from the Autonomic Computing research area (Kephart and Chess, 2003; 
Kephart 2005) that draws in an enormous diversity of fields within and beyond the boundaries of 
traditional research in computer science. For example, autonomic computing is one of the latest 
application areas for machine learning (Rish et al, 2006). 
 
The AUGURES project presents an autonomic computing approach, based in the self-management 

of limited resources, seeking the maximization of revenues obtained from sales in an eCommerce 
application. Poggi et al (2007a) consider the case where the eCommerce application has a fixed and 
limited amount of CPU resources available. They apply machine learning techniques to analyse the 
probability of purchase of each of the sessions and use these probabilities to prioritize the sessions 
with higher purchase probability in case of overload. The basics of the AUGURES system and the 
most relevant results obtained so far are summarized in Section 2. Section 3 proposes an extension of 
the functionalities of the AUGURES system by allowing to dynamically acquire extra resources if the 
currently available static resources are fully committed; e.g. in case of system overload caused by 
increased number of users. The bids to increase resource capacity with extra resources would be 
autonomously performed based on policies according to expected benefit of the transactions. Finally, 
section 4 presents some conclusions and future work. 

2 The AUGURES System 

2.1 The architecture 

 
The AUGURES architecture has an offline component which takes a historical user access log file 
from the eCommerce application and produces a model (the predictor), that is used in real time to 
estimate the probability of purchase for each user session. The real-time component gets the incoming 
requests, runs them through the predictor, and outputs the priority along with other static information-
for the session, which is then used by the firewall’s session manager to enforce the required actions 
according the company’s rules and current load on the system. These two subsystems are presented 
graphically in Figure 1.  
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Figure 1. The AUGURES System 

 
The log file used by the offline module is produced by the dynamic application of the company 

site.  It contains non ambiguous session and page actions (tags) as historical data, and is first cleaned 
and reorganized by a preprocessor. The preprocessor produces an intermediate dataset with one line 
for each transaction. These lines are largely computed independently from each other, so they do not 
contain information about the user navigation pattern; that is why we call the information in this 
dataset static. Next, the dataset is enriched with dynamic information reflecting the user navigation 
sequence, relating the different transactions of the same section. This is done by computing Markov 
models of both buying and non-buying sessions; the prediction of these models for each individual 
request is added as extra information to each line of the preprocessor. Finally, this enriched dataset is 
passed to a learning module that produces a predictor, some mathematical function that, given a 
request, assigns it a buying probability. See Poggi et al. (2007b) for more details.  
 

2.2 Some results 

The architecture described above proves useful when the system is working in overload conditions. 
The percentage of buying transactions in the original dataset is 6.6 %. If the AUGURES system is 
used to prioritize the transactions and only the top priority transactions are kept, the percentage of 
buying transactions in the filtered dataset significantly increases. Figure 2 shows the precision 
(understood as the percentage of purchasing requests among the admitted ones) vs the percentage of 
admitted transactions. For example, we see that if we can only serve the 10% of the incoming 
requests, selecting them at random would lead to a 6.6% of purchasing requests, while if we use 
AUGURES to prioritise the percentage of purchasing requests would increase to almost 40%. 

 

Figure 2. Precision vs %admitted 

3 Policy based autonomous bidding in AUGURES 

The AUGURES architecture does its best to maximize the throughput in economic terms given the 
amount of resources that are permanently allocated to the application (that is, with a static allocation), 
but does not do anything to leverage the existing extra resources in the market (dynamic allocation). 
Since many applications share resources in a server farm with several other applications, and those 
resources can be used almost instantaneously (Guitart et al, 2005), it seems reasonable to think about 
deviating to the extra dynamic resources some of those requests that have not been served by the 
static server, because AUGURES had given them a low priority. AUGURES ranks the sessions 
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according to their purchase probability and if the static server is able to process K sessions 
simultaneously, it keeps the top K sessions. This does not mean that the dismissed sessions are not 
interesting. If the system had enough resources to serve them, they would be served and some of them 
would end up making purchases and providing some revenue. It can be the case that it is worth paying 
for extra dynamic resources in order not to loose this revenue.  
 
Markets seem to be useful to solve resource allocation problems (J. Shneidman et al, 2005). We 

propose to use automated bidding for resource trading (Neumann, 2006) in this scenario. A policy-
based autonomous bidding system should decide the bids for the extra resources required to serve all 
or some of the requests that have not been served by the static server. The bid should take into 
account the expected profit that the request is likely to give. The current AUGURES prototype does 
not estimate the expected profit of a request, but only provides an estimation of the purchase 
probability. As an approximation, the average profit per purchase can be used, although in future 
versions of the prototype a more precise estimation based in the probability distribution will be given. 
 
A bid consists of the request of a number of CPUs during a certain time in exchange of a certain 

amount of money. Both the number of CPUs and the time needed are values that we assume that can 
be calculated, and we concentrate on the price. The price assigned to a bid to execute a request using 
extra resources will be determined by the expected value of the requests and the policy defined by the 
user. We propose to use a very simple policy to define maximum bid prices taking into account the 
risk aversion of the decision maker: 
 
Bid price BP= α·EP  

 
where EP the expected profit of the transaction and a α value close to 1, lower if the decision maker 
is risk-averse and higher if he is risk-prone. 
 
If the market is offering the necessary resources to execute a request at a price that is lower or 

equal to BP, then the request not served by the static server is executed using extra resources. 
  
Overload management in eCommerce websites is an interesting area of application for policy-

based autonomous bidding techniques, since decisions are taken in timescales too short for humans to 
personally take the decisions, and the definition of a policy that is autonomously implemented seems 
to be a natural choice. However, the concepts in this field are sometimes difficult to understand, since 
they imply some kind of knowledge about technical details of web servers and web applications. But 
policies for resource overload are not restricted for web traffic management. There are a number of 
more general situations where the techniques studied in this work could be applied. An example of 
another application field would be overbooking management. Most air carriers do overbook their 
existing capacity, i.e. they sell more tickets for a flight than the number of passengers they can 
actually carry, trying to increase their benefits accounting for the no-shows. They must often face the 
situation of having more passengers showing for a flight than the number of available seats. In this 
case, the airline typically offers compensation to the passengers that are not accepted to the flight, 
who in some cases volunteer to postpone their trip in exchange of the compensation. If the number of 
passengers that volunteer to get the compensation is not enough to free all the necessary seats to 
accommodate all the passengers, the airline can choose whom to prioritize and whom to deny access 
according to some rules incorporating the existing knowledge about passengers and their expected 
value, analogously to the presented approach for the prioritization of online requests suggested by the 
AUGURES approach. Similarly, they might want to buy the necessary additional capacity out in the 
external market, when doing so is less expensive (considering both economic and image costs) than 
paying the compensations and postponing the overbooked passengers’ trips.  
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4 Conclusions and future work 

The policy-based autonomous bidding seems to be an interesting strategy to leverage the external 
resources in a CPU market to deal with overloads. Several aspects have to be improved in order to be 
able to define a policy that can be used in a real case. The quantification of the expected revenue of a 
transaction is crucial to define the bids, and it should be estimated in the future versions of the 
AUGURES system; currently only the probability of purchase is estimated, not the magnitude of the 
transaction. The AUGURES project is still ongoing, and it is expected that the ideas suggested in this 
paper are incorporated to a newer prototype in order to test their applicability in real cases.  
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