
Power-aware Multi-DataCenter Management using
Machine Learning

Josep Ll. Berral, Ricard Gavaldà, Jordi Torres
Universitat Politècnica de Catalunya and Barcelona Supercomputing Center

{berral,torres}@ac.upc.edu, gavalda@lsi.upc.edu

Abstract—The cloud relies upon multi-datacenter (multi-DC)
infrastructures distributed along the world, where people and
enterprises pay for resources to offer their web-services to
worldwide clients. Intelligent management is required to au-
tomate and manage these infrastructures, as the amount of
resources and data to manage exceeds the capacities of human
operators. Also, it must take into account the cost of running the
resources (energy) and the quality of service towards web-services
and clients. (De-)consolidation and priming proximity to clients
become two main strategies to allocate resources and properly
place these web-services in the multi-DC network. Here we
present a mathematical model to describe the scheduling problem
given web-services and hosts across a multi-DC system, enhancing
the decision makers with models for the system behavior obtained
using machine learning. After running the system on real DC
infrastructures we see that the model drives web-services to
the best locations given quality of service, energy consumption,
and client proximity, also (de-)consolidating according to the
resources required for each web-service given its load.

I. INTRODUCTION

The current leading paradigm of distributed computing,
known as Cloud Computing, has become crucial for the
externalization of IT resources for business, organizations and
people. The possibility of offering “everything as a service”
(platform, infrastructure and services), allows companies to
move their IT needs to external hosting, reducing costs as they
pay only for resources they use. E.g. AmazonWS [2] offers
virtualized resources to run web-services, with total transpar-
ent view of the infrastructure to their customers. Naturally,
providers want in turn to optimize the use of the resources
they have deployed with their own metrics. Because of the
volume, heterogeneity, and complexity to be managed, this has
become today a hard optimization problem. It is even harder
for a typically provider who owns a multi-DC system, usually
distributed through the world, and must balance response
times, data and task location, and energy consumption.

Any management policy starts by identifying the factors
to be optimized, in our case revenues and costs. Revenues
come from servicing the clients of the hosted web-services
with reasonable Quality of Service (QoS), and costs are
mainly operational costs for the infrastructure (e.g. energy
consumption). Energy-related costs (powering machines and
disks, cooling, . . . ) have become nowadays a major cost
factor for IT. These costs are reflected in electricity consump-
tion, which grows linearly or more with the capacity of the
datacenter, and also with environmental impact [16], social
and government pressure, and public image. Consolidation is

a common strategy used to save power: set the maximum
number of services in the least viable amount of hosting
machines, so the number of on-line machines and resources is
minimized. Virtualization technology has made consolidation
easier, as web-services are boxed in Virtual Machines (VMs)
running in mutual isolation in the same Physical Machine
(PM), and migrated when necessary.

Management at short time scales is today typically auto-
mated, as human operators cannot cope with the size of the
resources to be managed and the speed at which decisions
must be made. Autonomic computing methods typically work
by using (or building) some model of the system, collecting
information about the current state, and then combining model
and observations to make online decisions. In this paper we
follow a line of work in which machine learning and data
mining methods are used to build the model. The idea is to
automate and improve the process even more, by building
models with a level of detail that the datacenter designer
cannot reach, or by keeping the model updated as hardware,
software, and demands change over time.

Unlike previous work, we consider management at the
“cloud” or multi-DC scenario level, that is, joint optimization
across a set of cooperating DataCenters (DCs), each one with
its own resources and receiving requests to host virtualized
web-services. DCs are interconnected to migrate VMs among
them and transport client traffic between VMs and clients.
They must keep the client-VM communication transparent to
clients, so that clients do not have to know the internals of the
VM hosting system. VM placement must provide each VM
with the resources to satisfy the load allocated to it, provide
proximity to the client if possible (to minimize network
latency, hence response time), and minimize overall energy
consumption, which may vary among geographically distant
DCs and over time. Additionally, it must also be sensitive the
latencies and bandwidth use incurred when VMs are migrated
within or among DCs.

Here we model multi-DC system management, to schedule
virtualized web-services within DCs and across DC networks,
using energy consumption, resource allocation and QoS as
decisive factors, as a mathematical optimization problem. We
use machine learning / data mining techniques for predicting
the effect of VM placement moves before actually performing
them, without relying on expert knowledge or requiring human
supervision in real time. In particular, such techniques let us
map low-level, input metrics (such as allocated CPU, memory,



or bandwidth of a tentative placement) to high-level, output
metrics (such as response times or energy consumption). We
previously studied these techniques for local DC management
successfully [6], [8], [10], and here we scale to multi-DC
systems taking into account new relevant factors like service-
client proximity, migration overheads, energy costs at different
locations, and modularity between inter-DC relations and
information. The main contribution of this paper is thus the
hierarchical extension of those techniques to the multi-DC
scenario.

To test the approach we build, using machine learning (ML),
predictive models of CPU, memory, bandwidth, response times
and Service Level Agreement (SLA) fulfillment from a real
system and workloads; we compare a previously studied
method based on the Best-Fit algorithm for scheduling [8],
with and without using the predictive models, to test each
prediction and the benefits of using learned models; and finally
we study the performance of our formulation in terms energy,
latencies, and QoS factors on a real DC environment using the
OpenNebula [19] virtualization platform.

This work is organized as follows: Section II presents
previous work in this area. Section III explains the multi-
DC business model. Section IV describes the mathematical
model, the algorithms to be used and the methodology and
study of learning and prediction of components and QoS.
Section V shows the experiments performed to study the
approach. Finally, Section VI summarizes conclusions and
future work. A list of acronyms is given at the end.

II. RELATED WORK

Previous works on DC management use machine learning
techniques to predict behaviors and select policies to be
applied. Works like [23], [21], [20], [15], focused on energy-
aware management, use Reinforcement Learning (RL) algo-
rithms to decide resource allocation policies, including consol-
idation techniques. Other works like [24] use RL for predicting
levels of quality of service on datacenter given a policy, or
works like [4] use fuzzy logic to predict resource usage and
make decisions. As far as we know, current approaches are
oriented towards learning the consequences of using policies
that depend on states of the multi-DC environment. Here we
focus on learning resource models and environment models
through machine learning, to supply decision makers with
information that is unknown or uncertain.

Most of the current works on modeling the cloud dis-
cuss specific systems or model more general systems “by
hand”, which is expensive in expert time. In the framework
MUSE [9] we find a mathematical model for autonomic
automatically scheduling jobs to resources in datacenters, in
order to optimize an economic objective function. In previous
works, and in this one, we share their idea of a mathematical
program to match resources, workloads and jobs. In [6], we
considered the optimization of a single datacenter, considering
only one basic resource: CPU usage; later in [8] we introduced
machine learning techniques to model the simultaneous usage
of several resources (CPU, memory, and I/O) and their relation

to higher-level metrics such as response time and quality of
service, to be used as oracles driving the decision maker.
Here, we focus now in distributed DC systems where the
global manager does not have full information of intra-DC
level metrics that the local DC managers has; the approach
is thus hierarchical or modular. Furthermore, we study the
approach on an architecture where resource are more limited,
thus there is more competition: In previous works we used
HPC architectures, while in this one we use energy-aware
architectures.

Load distribution among datacenter networks is also an
important aspect to be dealt with. Virtualization technology
allows an easy management and migration of jobs among
hosting machines and DCs [18], and orchestrating this man-
agement on DCs and multi-DC networks is currently a chal-
lenging topic (see [12], [5]). In [25], migration strategies for
virtualized jobs and hotspots are discussed within the Sandpipe
framework. Other works focus explicitly on balancing load
by following renewable energies, like [17] and [11], where
optimization focuses on moving load to where renewable
energy is available at each moment. Here we apply virtual-
ization on our system to migrate the load across a worldwide
distributed multi-DC network, balancing DC-user proximity
vs. migration costs vs. energy consumption; a ‘follow the
sun/wind” policy could also be introduced easily into the
energy cost computation.

III. MANAGING MULTI-DCS

A. Business Model for Multi-DCs

Companies offering computational power or web hosting
(e.g. Amazon [2]) base their business on offering customers re-
sources from their multi-DC system for running web-services
(often virtualized). Customers pay the provider according to a
Service Level Agreement (SLA), generally focused on Quality
of Service (QoS) objects toward the web-service clients.
Usually this QoS depends on the amount of resources (CPU,
Memory, IO...) granted to each VM (hence to the web-service),
but these resources have a cost in running them (energy,
maintenance, cooling, . . . ). The provider goal is to ensure
the agreed QoS for the VMs, while minimizing the costs
by reducing the resource usage. The business infrastructure
is shown on Figure 1.

Figure 1. Multi-DC business infrastructure

A typical QoS measure on web sites is Response Time (RT).
RT is affected by the time to process a client request and



dispatch it, also the proximity of the service to the client.
The time to process and dispatch is affected by the resources
dedicated to the VM and the load towards the web-service
(number of requests competing for it) at that same time. A VM
receiving insufficient resources will be slower to reply to user
requests, but over-granting resources past a certain point will
not necessarily speed-up the replies. Proximity to the client
depends on the localization of the client requesting the web-
service, the placement of the required VM holding the web-
service, and the connection between the DC with the client.
Here we consider that client requests going to non-local DCs
can pass through our inter-DC network, while the client is
connected through his/her local DC [1].

Finally, thanks to VM migration, web-services can be
moved using a “follow the X” strategy. On green energy aware
systems, VMs follow the sun, or the solar and wind production,
minimizing the usage of “brown” energy. Other systems, like
ours, use a “follow the load” policy, moving VMs close to
their clients to provide good response times, unless local host
overload or a locally high cost of energy forces otherwise. As
mentioned, it would be easy to add to our policy a preference
for locally available renewable energy over brown energy.

B. Collecting Information

In cloud-like architectures oriented to multi-DC infrastruc-
tures, middleware are in charge of managing VMs and PMs
in an autonomic way, following policies and techniques based
in the “Monitor, Analyze, Plan, Execute” schema [9]. We rely
on such middlewares both for collecting high- and low-level
data (monitoring), and for managing VMs and PM resources
(executing). Figure 2 shows the typical multi-DC middleware
infrastructure. This software controls each VM resource shar-
ing by monitoring PM resources and adjusting VM placements
and quotas, a decision maker reads all monitored information
and makes decisions based on its given policies and functions
to be optimized, also a gateway agent redirecting traffic and
monitoring the RTs (and so QoS) for each web-service.

Figure 2. Virtualization middleware schema

When we are scheduling a VM in a given DC we are
interested in each VM requirements and each PM resource
availabilities, also to be aware of current loads to each VM
and resulting RTs. We can monitor the load to each VM
by measuring the number of requests, the average response
time per request and the average bytes per request, also how
much CPU, Memory and Bandwidth is used in each PM,
and how those are being shared among the VMs. Using
machine learning methods we want to 1) anticipate the VM
requirements given an expected incoming load, 2) reduce
overhead of PM monitors, when observations can be replaced
by estimations, and 3) predict an expected RT and QoS given
tentative placements, making better scheduling decisions to
maximize QoS.

Handling all this information becomes difficult the larger,
more distributed, and loaded the system becomes. For this
reason multi-DC systems management tend to decentralize,
allowing each DC to administer their PMs and VMs, transfer-
ring VMs across DCs only when required. Here we propose
allowing each DC to deal with its VMs and resources (as
shown on [8]), bringing to the global scheduler information
about the offered or tentative host where each VM may be
placed for each DC. This modularity lets the global scheduling
to drive the multi-DC by load sources, energy costs, and also
predicting QoS using the provided host information for such
DC; and after locating the VM into a DC, the local DC
will decide if it reallocates properly the VM inside it or (de-
)consolidates intra-DC.

C. Service Level Agreements

Quality of Service as perceived by the client is a highly
complex issue, involving technological and psychological fac-
tors. Response Time, the amount of time required by our
DCs to reply to a request, is a typical object in Service
Level Agreements (SLA), the contracts where providers and
customers agree on a common notion of QoS. Here we make
the simplifying assumption that SLA fulfillment is strictly a
function of RT; further factors such as up-time rate could be
added to our methodology, as long as they are measurable
from monitored data. To be specific, here we measure the RT
on the datacenter domain and network, not at the client side
since he may use unpredictable thinking time and may have a
slow machine or connection at their end.

A common “RT to QoS function” in SLAs is to set a
threshold α and a desired response time RT0, and set SLA
fulfillment level to

SLA(RT ) =


1 if RT ≤ RT0,
1− RT−RT0

(α−1)·RT0
if RT0 ≤ RT ≤ α ·RT0,

0 if RT > α ·RT0

that is, the SLA is fully satisfied up to response time
RT0, totally violated if it exceeds α · RT0, and degrades
linearly in between. We use this function for simplicity in
our experiments, but this is a nonessential choice.



Maximize:
Profit =

∑i∈VM frevenue(SLA[i])−
∑i∈VM fpenalty(Migr[i],Migl[i], ISize[i])−

∑h∈PM fenergycost(Power[h])

Output:
Schedule[PM,VM ], Integer Binary ; the Schedule
Parameters:
Resources[PM], resources 〈CPU,MEM,BWD〉 per host
Load[VM, Locs], requests, bytes/req, ... per VM and source
pastSched[PM,VM], previous schedule
LatencyHL[PM, Locs], latency between hosts and sources
LatencyHH[PM, PM], latency between two hosts
ISize[VM], size for the image for current VM
RT0i and αi, RT0 and α for VM i to fully satisfy its SLA
Constraints:
1) ∀i ∈ VM :

∑h∈PM Schedule[h, i] = 1

2) ∀h ∈ PM :
∑i∈VM GivenResources[i] · Schedule[h, i] ≤ Resources[h]

3) ∀h ∈ PM : Power[h] = fPower(
∑i∈Schedule[h, ]GivenResources[i])

4.1) ∀i ∈ VM :Migr[i] = d
∑h∈PM(Schedule[h, i]⊕ pastSched[h, i])e1

4.2) ∀i ∈ VM :Migl[i] =
∑h1,h2∈PM2

Schedule[h1, i] · pastSched[h2, i] · LatencyHH[h1, h2]

5.1) ∀i ∈ VM : ReqRes[i] = fRequiredResources(VMi, Load[i, ])

5.2) ∀i ∈ VM : GivenRes[i] = fOccupation(RequiredResources[i], Schedule[i, h])

6.1) ∀i ∈ VM : RTprocess[i] = fRT (Load[i, ], RequiredResources[i], GivenResources[i])

6.2) ∀〈i, l〉 ∈ 〈VM, L〉 : RTtransport[i, l] =
∑h∈PM LatencyHL[h, l] · Schedule[h, i]

6.3) ∀〈i, l〉 ∈ 〈VM, L〉 : RT [i, l] = RTprocess[i] +RTtransport[i, l]

7) ∀i ∈ VM : SLA[i] = fSLA(RT [i, ], RT0i, αi)

Figure 3. Mathematical Model

IV. MODELING THE SYSTEM

A. Mathematical Approach

The mathematical model shown in Figure 3 represents the
constraints in our system and the metric to be maximized.
Desired output (solution): The schedule, containing which
PM must hold each VM.
Objective Function: Maximize the sum of:

• income from customers for executed VMs. The
frevenue() is agreed between provider and customer
depending on the SLA.

• minus the penalties for SLA violation when migrating.
The fpenalty() is also agreed between provider and cus-
tomer about how migrations must be penalized.

• minus the energy costs, as the sum of energy consumed
by all on-line machines. The fenergycost() is agreed
between resource provider and energy provider.

Such functions are defined by the provider after setting such
SLAs and negotiating the price per watt-hour. The function
reflects the trade-off we have been discussing so far: one
would like to have as many machines turned on as possible
in order to run as many customer jobs as possible without
violating any SLA, but at the same time to do this with as few
machines as possible to reduce power costs. The unknowns of
the program describe which tasks are allocated to each PM,
and how resources of each PM machine are split up among
the tasks allocated to it. Constraints in the program link these

variables with the high level values (degree of SLA fulfillment,
power consumption). The point of our methodology is that
the functions linking the former to the latter are, in many
cases, learned via ML rather than decided when writing up
the program.
Problem Parameters: Host (PM) Resources: CPU, Memory,
and Bandwidth characteristics per PM; Job Load: Amount of
load (number of requests, average bytes per request, average
CPU process time per request, etc) for each different topo-
logical load source; the Previous Schedule; Latencies: latency
between each load source and each PM (PMs in the same
DC will have the same values), also latency between any two
hosts; Image Size: size of VM images, to calculate the time
required for migrating a VM; Baseline Response Time (RT0)
and Tolerance Margin (α): The two parameters in the SLA
describing its fulfillment according to the resulting RT.
Problem Constraints: 1) We assure a VM involved in this
scheduling round is finally placed in one and only host. 2)
The resources granted to the set of jobs allocated in one
host must not exceed the amount of resources the host has
available. 3) For each host we set the power consumed by
all its granted resources. 4) For each job we set whether
it is being migrated or not, and its latency between origin
and destination. 5) Resources required and granted to a job
given its tentative placement. 6) Response Time (production
RT) given the load, required and granted resources, also the
transport RT for each location. 7) SLA fulfillment for each



job, from the RT obtained, the basic RT and tolerance margins
agreed with the customer. This function can be used over each
request or over the average RT (weighting the different load
sources).

Power consumption in multi-core computers depends non-
linearly on the number of active cores and CPU usage. E.g. in a
Intel Atom 4-Core machine (the ones used in our experiments),
power consumption when one core is active is 29.1 watts. It
grows to only 30.4, 31.3, and 31.8 watts when 2, 3, and 4 cores
are active, respectively. This implies that two such machines
using one core each consume much more energy than a single
machine executing the same work on two (or even four)
cores if we shut down the second machine. This explains the
potential for power saving by consolidation. Further, usually
in DCs, for each 2 watts consumed by the machine, an extra
watt is required for cooling, another reason to reduce energy
consumption.

To calculate a migration penalty, we take a perhaps pes-
simistic approach and assume that while migrating a VM
(freezing the VM, transporting the image, and restoring it)
the VM fails to respond entirely, so its SLA fulfillment is 0.
Finally, to determine required and given resources, we can get
information from the monitors, or use the ML predictors to be
explained in the next subsection. Also to determine the RT and
SLA, in a reactive system we can try to obtain it statistically
from the previous executions, while we are doing it proactively
using our learned models.

B. Adaptive Models

When making decisions we often find that the required
information 1) is not available, 2) is highly uncertain, 3) cannot
be read because of privacy issues, or 4) obtaining it interferes
too much with the system. Examples of this occur when
reading from both PMs and VMs, and information coming
from VMs is extremely delicate to handle and interpret.
Observed resource usage can be altered by the observation
window, the span of time between samples, or the stress of
its hosting PM. Overheads of virtualization also add noise to
the resource observation, independently of the load received
by each VM. Opening the VM to read information from
its internal system log could be against customer privacy
agreements. Furthermore monitors can also add overhead to
the PM, altering VM’s performance; e.g. during experiments
we occasionally observed monitors peaking up to 50% of an
Atom CPU thread.

The advantage of ML over explicit expert modeling is
when systems are complex enough that no human expert can
explore all relevant possibilities, when no experts exist, or
when system changes over time so models must be rebuilt
periodically or reactive to changes. In today’s systems, this
occurs continuously due to e.g. automatic software updates.

Here we build predictive models for all elements that could
be considered relevant for deciding VM placement. From load
characteristic of each web-service and its clients (Requests per
Time Unit, average Bytes per Request, average Computing
Time per Request in no-stress context), we learn and predict

the resources that the VM will use to serve its requests (CPU,
memory, I/O network traffic, and energy). As reported in
previous work [8], the memory used by a PM memory can
be safely assumed to be the sum of the memory allocated
to its VM’s, and PM network I/O is the sum of the I/O of
its VM’s. But total CPU used by a PM typically exceeds the
sum of CPU power used by its VM’s, due to management
overhead; we thus learn the function describing the amount
of PM CPU used as a function of the number of VM’s and
their metrics. We add to these predicted values information on
the current load arriving to each VM and information from
the gateway element (sizes of the queues of pending requests
for these VMs, which represent additional immediate load).
This information suffices to predict, by an another previously
trained predictive model, response time and/or SLA fulfillment
level. We then have all the elements (processed jobs, SLA
fulfillment, and energy costs) to compute the profit generated
by this particular PM.

Also in previous work [8] we determined that resource
usage and response time, in this setting, can be modeled
reasonably well by piecewise linear function, which explains
that a regression trees (decision trees with linear regressions
at the leaves) work well as predictive models. We used in
particular the M5P regression tree method in the WEKA
package. One exception is the prediction of SLA for each VM,
where we used the k-Nearest Neighbor technique, which works
by comparing the current situation with those seen before and
choosing the most similar one(s). See [14] for more details on
these algorithms.

Table I shows, for each predicted element, the ML method
used for prediction, the correlation between the real and
predicted values when validating the model, the mean absolute
error and error standard deviation, the number of instances for
training and validating the model, and the range (min,max) of
the data. Our hypothesis is that predicting these data with such
low error will help the decision maker to manage better the
datacenter than not having it. A choice we had was whether to
predict the RT and compute the SLA fulfillment value or try
to predict the SLA fulfillment value directly. We noted here
that better results are obtained if SLA is predicted directly,
possibly because it has a bounded range so it is less sensitive
to outliers.

C. Scheduling Algorithms

Let us discuss the methods used for solving the mathemat-
ical program above. In general, the functions mentioned in
the program need not be linear, but it is not difficult to find
reasonable piecewise linear approximations. One could then
use a Mixed Integer Linear Program (MILP) solver, but as seen
in our previous work [6], even decent out-of-the-box solvers
(e.g. GUROBI [13]) required several minutes to schedule
10 jobs among 40 candidate hosts. The problem aggravates
when as we want to use more complex functions (e.g., k-
NN for SLA) and become Now, by having more complex
functions (SLA function becomes a K-NN method, visiting
several times all examples × variables for each tentative



ML Method Correl. Mean Abs Error Err-StDev Train/Val Data Range
Predict VM CPU M5P (M = 4) 0.854 4.41%CPU 4.03%CPU 959/648 [0, 400] %CPU
Predict VM MEM Linear Reg. 0.994 26.85 MB 93.30 MB 959/1324 [256, 1024] MB
Predict VM IN M5P (M = 2) 0.804 1.77 KB 4.01 KB 319/108 [0, 33] KB
Predict VM OUT M5P (M = 2) 0.777 25.55 KB 22.06 KB 319/108 [0, 141] KB
Predict PM CPU M5P (M = 4) 0.909 14.45%CPU 7.70%CPU 477/95 [25, 400] %CPU

Predict VM RT M5P (M = 4) 0.865 0.234 s 1.279 s 1887/364 [0, 19.35] s
Predict VM SLA K-NN (K = 4) 0.985 0.0611 0.0815 1887/364 [0.0, 1.0]

Table I
LEARNING DETAILS FOR EACH PREDICTED ELEMENT AND SELECTED METHOD. WE USED A 66%/34% TRAINING/TESTING DATASET

SPLIT IN ALL CASES.

solution), exhaustive MILP methods become infeasible if we
want to get schedules at least once per hour. This made us
to look for heuristic algorithms that produce fast and good
approximations; as in [6], we used the classic Ordered Best-
Fit method [22] for bin packing. In our terminology, it tries
to place each VM in order in the PM where it fits best
— see Algorithm 1. In the algorithm, the profit function
is the responsible of computing the SLA, energy, migration
and latency factors, computing the profit for each tentative
placement.

Algorithm 1 Descending Best-Fit algorithm
for each vm i:

get_data(i);
res_req[i] <- get_required_resources(i);

for each host j:
res_avail[j] <- get_total_resources(j);

order[] <- order_by_demand(vms,res_quota[],desc);
for each vm v in order[]:

best_profit <- 0;
c_host <- 0;
for each host h:

profit <- profit(v,h,res_req[v],res_avail[h]);
if (profit > best_profit) :

best_profit <- profit;
c_host <- h;

assign_vm_to_host(c_host,v);
update_resources(res_avail[c_host],v);

If starting from scratch, the running time is proportional
to the product of number of VM’s times number of PM’s.
We considered a number of points to reduce it. One is that
we do not include in the scheduling process VMs and PMs
that are already performing well in a consolidated way, which
is probably the large majority if the result of the previous
scheduling round was good. Also, the method only considers
for scheduling across DC’s those virtual machines that could
improve its QoS if moved across DCs (namely, because all
PM’s in their current DC already have a very high load).
Thus, each DC only provides to the global scheduler a set
of available physical machines and a set of VM’s that may
benefit if scheduled somewhere else. We thus have a two-
layer approach: a number of intra-DC scheduling problems,
solved starting from a possibly quite good previous schedule,
and one global inter-DC problem, with a narrow interface
to the intra-DC problems. In our experiments, this approach
largely reduces solving cost, compared to the theoretical worst-
case. Additional optimizations include considering only once
identical empty host machines and not considering almost full
hosts that cannot accommodate additional VM’s.

V. EXPERIMENTS

A. Environment Description

We have performed the experiments on low-energy con-
sumption machines (Intel Atom 4 Core), where resource man-
agement is critical in order to accept as much load as possible
without degrading QoS. PMs run the Oracle VirtualBox virtu-
alization platform, and each VM runs a web-service software
stack (Apache, PHP, MySQL). The workload used corresponds
to the Li-BCN Workload [7], a workbench and collection of
traces from different real hosted web-sites offering from file
hosting to image-gallery services; the workload was properly
scaled to create heavy load for each experiment. Here we use
client-service transactional benchmarks, but other kind of web-
services based on message-passing could also be of interest.

Our scenario, as a case of use, is composed of four DCs in
different continents (e.g. Brisbane, Australia; Bangaluru, India;
Barcelona, Spain; Boston, Massachusetts), connected by high-
speed network (network energy costs are not considered in this
work; we keep this as future work). For each DC there is an
amount of clients accessing the the services according to their
local workload. Note that we performed the experiments in
our local DC, but introducing network latencies and delays
between machines and clients corresponding to the four dif-
ferent simulated geographical locations. This should suffice as
a proof of concept for the model, learning components, and
VM behaviors.

To price each element involved in the system, we established
that providers behave as a cloud provider similar to Amazon
EC2, where customers rent VMs in order to run their web-
services (0.17 euro per VMh). For energy costs, we obtained
the energy cost (euros per kWh) for the different places where
we have a DC placed, so the cost of running a PM will depend
on the DC where it is placed. Also, the migration costs depend
on the latency and bandwidth between DC connections. We
took as example the intercontinental network of the Verizon
network company [3] to obtain latencies between locations and
assumed a fixed bandwidth of 10 Gbps.

The RT, as a QoS measure in our SLA, is measured from
the arrival of a request to the exit of the reply for it through the
Internet Service Provider (ISP). As SLA parameters, we set
as RT0 the values 0.1s, as experiments on our system showed
that it is a reasonable response value obtained by the web
service without stress, and the α parameter is set to 10 (SLA
fulfillment is 0 if RT ≥ 10RT0).



B. Intra-DC Comparatives

The first set of experiments are to check the benefits of
driving an intra-DC scheduling for VMs using the learned
models. As seen in previous works [8], Best-Fit performs
better among greedy classical ad-hoc and heuristics, and here
we check it against the environment. We compare 1) the Best-
Fit algorithm checking if a VM can fit in the PM given the
resources it has used in the last 10 minutes, and optimizing
just power and latency to clients; 2) the Best-Fit algorithm
with resource overbooking (BF-OB), i.e. booking for a VM
double the resources it requires, to account for unexpected
load peaks; and 3) the ML-enhanced Best-Fit, which uses the
predicted CPU, memory, and I/O required for each VM to
decides if it fits in a PM. The goal is to see how much the
learned models help Best-Fit to (de-)consolidate in a way that
maintains high throughput and SLA without wasting energy.

We set up 4 PMs with OpenNebula and VirtualBox, holding
a total of 5 VMs, a PM acting as gateway and DC manager,
and 4 machines generating LiBCN10 scaled load towards the
5 VMs. Figure 4 shows the results of running the workload
for 24 hours, with a scheduling round every 10 minutes.

Figure 4. Results and Factors for Intra-DC Scheduling

The Best-Fit algorithm with ML enhancement (de-
)consolidates constantly to adapt VMs to the load level, while
Best-Fit without ML considers that given the monitored data
it is not required to do so, and uses less CPUs and less PMs
risking the SLA. So the ML approach learns to detect situa-
tions where SLA fulfillment may not be achieved (because of
CPU competition, memory exhaustion and/or IO competition),
hence migrating sufficient VMs to other machines with better
contexts. The drawback of de-consolidating is higher energy
use, but as long as SLA revenue pays for the energy and
migration costs, Best-Fit with ML will usually choose to pay
energy to maintain QoS.

Not reported here, for space reasons, is the fact that these
ML-augmented versions can automatically adapt to changes

in task execution prices, SLA penalties, and power price as
shown on [6]. Adapting the ad-hoc algorithms to these changes
requires expert (human) intervention, and is simply unfeasible
in the highly changing scenarios envisioned for the future,
where virtual resources, SLA penalties, and power prices will
interactively and constantly be in negotiation, for example by
means of auctions and automatic agents.

C. Inter-DC Comparatives

After checking the learned consolidation Best-Fit strategy
we study the inter-DC scenario, where VMs can be placed in
one of several DCs, each one with different energy prices and
different latencies among them and with clients. Issues with
multi-DC systems are that often the best placement according
to SLA requires paying more for energy, or migration penalties
make better a different placement, consolidating and moving
VMs differently to a single fixed factor, but as the combination
of all the factors.

As a case of study, here we set one PM to represent a
DC. As the intra-DC scheduler will arrange local PMs to
a correct SLA fulfillment level, this PM will represent an
on-line machine available to host a VM just entering the
system or arriving from another DC. Each DC has an access
point for clients (an ISP) machine collecting all the requests
originating in the area where the DC is and sent to any VM
in our system. Requests arriving to a DC but aimed to a
VM on a another DC will be routed through our network,
experiencing the latency between the the local DC and the
remote DC. We apply our workload upon each VM from
each ISP, but scaling each of the four workloads differently
and simulating the effect of different time zones and load
time patterns. Table II shows the prices and latencies used.

Euro/Wh LatBRS LatBNG LatBCN LatBST
Brisbane (BRS) 0.1314 Wh 0 265 390 255
Bangaluru (BNG) 0.1218 Wh 265 0 250 380
Barcelona (BCN) 0.1513 Wh 390 250 0 90
Boston (BST) 0.1120 Wh 255 380 90 0

Table II
PRICES AND LATENCIES USED IN THE EXPERIMENTS. LATENCIES ARE IN

MS [10GBPS LINE])

Follow the Load and Consolidation
First of all we perform a “sanity check”, looking at the
movements of VM without adding SLA or Energy factors
yet (the simple “follow the load” policy). That is, the driving
function is SLA taking into account only the request latency.
Given this, Best-Fit places each VM as close to its major
load source as possible. Figure 5 shows the movement of a
single VM being driven only by this kind of SLA, without any
resource competition or energy awareness. The VM follows
the main source load to reduce the average latency to its
globally distributed clients.

After checking that “follow the load” occurs, we introduced
the energy consumption factor. When the function to
be optimized includes energy costs, the scheduler will
consolidate more noticeably while also taking into account



Figure 5. VM placement following the Load for Inter-DC Scheduling

client proximity and migration costs. In short, it will tend to
consolidate either in the place closest to the load, or in the
place where energy is cheapest, depending on the parameter
values. Results are not reported.

Benefit of De-locating Load
Next, again for sanity check, we consider a somewhat artificial
scenario with a single DC (in an averaged location for energy
costs and latencies), where all VMs are held fixed receiving all
the load, and compare it to another scenario where this DC can
de-locate VMs (migrate VMs to other DCs temporarily) when
it is overloaded. Despite having worse latencies and migration
overheads when de-locating, SLA fulfillment increases from
an average SLA of 0.8115/1 to an SLA of 0.8871/1 per VM
doing this. This would translate, in the current experiment, to
an average net benefit increase of 0.348 euro/VM in a day.

In this experiment, the migration to another DC incurs
in a latency increase of 0.09 to 0.39 seconds, but happens
at the time when the load was so severe on the VM that
its response time had degraded to about these 0.09 seconds
over the desired 0.1 seconds. We observe that for lower
SLA increments it prefers to consolidate in the local DC.
Obviously the de-location threshold will depend on the RT0
values and inter-DC latencies, but it is clear that the method
is able to decide when de-locating VMs is worth it or not.

Full Inter-DC Scheduling
Once checking latency and energy factors, and observing the
de-location benefit from a DC point of view, we perform the
complete scheduling of the multi-DC system. Results are given
in Figure 6. We note the following facts:

1) When load is heavy, the scheduler distributes VMs
across DCs, deconsolidating across DCs as the intra-

DC scheduler does within each DC. With the range
of parameters and prices tested, SLA fulfillment and
the associated revenue is still the most important factor
driving deconsolidation. This can be seen in particular
in highest load moments, or when SLA is below 1.

2) When SLA is not compromised, energy consumption
pushes for consolidation into the DC with cheapest
energy (see the low load moments).

3) When a potential VM move does not bring any improve-
ment in SLA or energy use, the VM either stays in its
DC or is consolidated to the nearest DC in latency.

Figure 6. Results and Factors for Inter-DC Scheduling

Note that the workload generator produced a flash-crowd effect
in the workload in minutes 70-90, for about 15 minutes, which
clearly exceeds the capacity of the system. We kept this part
of the workload in the test for realism.

Again, deconsolidation effects are seen when load (number
of requests) increases or requests become more expensive
to answer. In these cases, the system improves SLA by
deconsolidation, countering the migration penalization and
also enforcing the reduction of service-client latencies.

Benefit of Inter-DC Scheduling
We finally address experimentally the main question of the
paper: is inter-DC optimization is better than intra-DC opti-
mization? that is, does the ability to move VMs among DCs
provide better solutions than keeping each VM within its DC
only? Here we compare two scenarios: 1) The static global
multi-DC network, where the VMs for each DC stay fixed
without moving across DCs, where clients around the world
can access every version but each web-service stays always in
the same DC near its potential clients or customer selected DC;
in other words, DCs do not cooperate by exchanging VM’s,
but just by redirecting the load they receive to its intended VM,
local or located somewhere else. And 2) the dynamic multi-DC
scenario we propose, where VMs may migrate among DCs to



improve global benefit. The benefit of the dynamic approach is
basically the capability of moving the VMs towards the place
where the energy is cheaper and/or available, or else to a DC
with lower load for increased QoS.

At this stage, we chose for realism to use actual electricity
prices for the four locations we have considered, which are
relatively similar. As energy costs rise and markets become
more heterogeneous and competitive, one should anticipate
larger variations of energy prices across the world, and the
benefit of inter-DC optimization priming energy consumption
should be more obvious. This is particularly so as renewable
sources such as solar energy become more widespread, be-
cause of their hour-to-hour variability and its very low cost
once the production infrastructure is in place.

Figure 7 shows the comparison among the static context and
the dynamic, when wanting to consolidate VMs among DCs.

Figure 7. Comparative Static vs Dynamic Inter-DC for 5 VMs

The large savings in energy is largely due to our experi-
mental limitation (one PM per DC), which leaves no room for
intra-DC energy savings by consolidation. One can observe,
though, that even in this restricted setting the algorithm
manages to slightly improve global average SLA and revenue
while reducing energy costs.

Avg Euro/h Avg Watt/h Avg SLA
Static-Global 0.745 175.9 0.921
Dynamic 0.757 102.0 0.930

Table III
COMPARATIVE OF RESULTS FOR THE MULTI-DC PER 5 VMS

Previous studies [10] showed that consolidation can achieve
a power consumption reduction of more than 30% without
counting the energy saving on cooling overheads (which
may cause around a 1.5 increase in power consumption).
So while maintaining SLA stable, we are able to improve
energy consumption in a 42% by consolidate/deconsolidate
in an inter-DC way, and further improve benefit by a 2%
a day, for VMs that can not be consolidated in their local DCs.

Trade-Offs for QoS and Energy Costs
Finally, trade-offs between QoS and energy costs depend in
the amount of load the VMs are receiving. Figure 8 shows
the relation of the three variables from the observations of the
given scenario; “load” is represented by amount of requests
per time unit, as the most significant attribute of the load.
Given the amount of load, as we want to improve the SLA
fulfillment we are forced to consume more energy. For each
level of load he can infer a characteristic function SLA vs
Energy. This plot would allow a manager to visualize how
much energy needs to be used to achieve a desired level of
QoS or, conversely, what level of QoS can be achieved under
some energy budget.

Figure 8. Relation of the SLA vs Energy vs Load

VI. CONCLUSIONS

Optimizing the schedule and management of multi-DC
systems requires balancing several factors, like economic
revenues, Quality of Service and operational costs such as
energy. This problem can be modeled as a mathematical
problem, solved approximately using e.g. greedy algorithms,
and can also be enhanced using machine learning models to
resolve uncertain or unavailable information, which lets the
system make decisions adaptively without much explicit expert
modeling.

Taking advantage of virtualization technology, we presented
a model to solve a multi-DC scheduling problem which bal-
ances and optimizes the economic factors above. Experiments
showed that the ML models can provide the required infor-
mation to consolidate/deconsolidate across DCs according to
the amount and geographic origin of the load for each VM,
the latencies among clients and DC’s and among DC’s, and
the different energy prices at different locations.



A few issues for future study are 1) how we decide which
VMs are excluded from inter-DC scheduling or which PMs
are offered as host candidates for scheduling; this affecting
directly to scalability of the method; and provide information
about how many PMs/VMs we can manage per schedul-
ing round; 2) The inclusion of more operational costs like
networking costs and bandwidth management 3) The green
energy into the scheme not only to reduce energy costs but
also environmental impact of computation. 4) The use of on-
line learning methods, able to retrain continuously on recent
data, to make the system react quickly to changes in either
application behavior, hardware or middleware changes, or
workload characteristics.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministry
of Science under contract TIN2011-27479-C04-03 and under
FPI grant BES-2009-011987 (TIN2008-06582-C03-01), by
EU PASCAL2 Network of Excellence, and by the Generalitat
de Catalunya (SGR2009-1428).

ACRONYMS

DC DataCenter
ISP Internet Service Provider
ML Machine Learning
Multi-DC Multi-DataCenter
PM Physical Machine
QoS Quality of Service
RT Response Time
SLA Service Level Agreement
VM Virtual Machine

REFERENCES

[1] Amazon DirectConnect (Jan.2013). http://www.amazon.com/DirectConnect/.
[2] Amazon WebServices (Jan.2013). http://aws.amazon.com/.
[3] Verizon (Jan.2013). http://www.verizonenterprise.com/about/network/latency.
[4] A. Andrzejak, S. Graupner, and S. Plantikow. Predicting resource

demand in dynamic utility computing environments. In Intl. Conf. on
Autonomic and Autonomous Systems (ICAS), page 6, july 2006.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[6] J. Berral, R. Gavaldà, and J. Torres. Adaptive Scheduling on Power-
Aware Managed Data-Centers using Machine Learning. In 12th IEEE
International Conference on Grid Computing (GRID 2011), 2011.

[7] J. Berral, R. Gavaldà, and J. Torres. Li-BCN Workload 2010, 2011.
http://www.lsi.upc.edu/dept/techreps/llistat detallat.php?id=1099.

[8] J. Berral, R. Gavaldà, and J. Torres. Empowering Automatic Data-
Center Management with Machine Learning. In 28th ACM Symposium
on Applied Computing (SAC), 2013.

[9] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat. Managing
energy and server resources in hosting centers. In 18th ACM Symposium
on Operating System Principles (SOSP), 2001.

[10] Í. Goiri, F. Julià, R. Nou, J. Berral, J. Guitart, and J. Torres. Energy-
aware Scheduling in Virtualized Datacenters. In Proceedings of the 12th
IEEE International Conference on Cluster Computing (Cluster 2010),
Heraklion, Crete, Greece, September 20-24, 2010.

[11] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini.
Greenhadoop: leveraging green energy in data-processing frameworks.
In 7th ACM European Conf. on Computer Systems (EuroSys), 2012.

[12] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual machine
hosting for networked clusters: Building the foundations for ’autonomic’
orchestration. In Conf. on Virtualization Technology in Distributed
Computing (VTDC), 2006.

[13] GUROBI. Gurobi optimization, 2013. http://www.gurobi.com/.
[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The WEKA data mining software: an update. SIGKDD Explor.
Newsl., 11(1):10–18, 2009.

[15] I. Kamitsos, L. Andrew, H. Kim, and M. Chiang. Optimal Sleep Patterns
for Serving Delay-Tolerant Jobs. In 1st Intl. Conf. on Energy-Efficient
Computing and Networking (eEnergy), 2010.

[16] J. Koomey. Estimating total power consumption by servers in the US
and the world. Final report. February, 15, 2007.

[17] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew. Online algorithms
for geographical load balancing. In Intl. Green Computing Conference
(IGCC), 2012.

[18] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo. Dynamic resource
management using virtual machine migrations. IEEE Communications
Magazine, 50(9):34–40, 2012.

[19] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet
Computing, 13(5):14–22, Sept. 2009.

[20] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management using
reinforcement learning. In Intl. Conf. on Computer-Aided Design
(ICCAD), 2009.

[21] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid
reinforcement learning approach to autonomic resource allocation. In
3rd Intl. Conf. on Autonomic Computing (ICAC), 2006.

[22] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
[23] D. Vengerov and N. Iakovlev. A reinforcement learning framework

for dynamic resource allocation: First results. In 2nd Intl. Conf. on
Autonomic Computing (ICAC), june 2005.

[24] P. Vienne and J.-L. Sourrouille. A middleware for autonomic QoS
management based on learning. In 5th Intl. Workshop on Software
Engineering and Middleware (SEM), 2005.

[25] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
gray-box strategies for virtual machine migration. In 4th USENIX Conf.
on Networked systems design & implementation (NSDI), 2007.


