
Distributed Learning Mechanism Against
Flooding Network Attacks

Josep L. Berral1, Javier Alonso2, Nicolas Poggi1, Ricard Gavaldà3, Manish Parashar4 and

Jordi Torres2

Abstract— Adaptive techniques based on machine
learning and data mining are gaining relevance in self-
management and self-defense for networks and dis-
tributed systems. In this paper, we focus on early
detection and stopping of distributed flooding attacks
and network abuses. We extend the framework pro-
posed by Zhang and Parashar (2006) to cooperatively
detect and react to abnormal behaviors before the tar-
get machine collapses and network performance de-
grades. In this framework, nodes in an intermediate
network share information about their local traffic ob-
servations, improving their global traffic perspective.
In our proposal, we add to each node the ability of
learning independently, therefore reacting differently
according to its situation in the network and local
traffic conditions. In particular, this frees the admin-
istrator from having to guess and manually set the
parameters distinguishing attacks from non-attacks:
now such thresholds are learned and set from expe-
rience or past data. We expect that our framework
provides a faster detection and more accuracy in front
of distributed flooding attacks than if static filters or
single-machine adaptive mechanisms are used. We
show simulations where indeed we observe a high rate
of stopped attacks with minimum disturbance to the
legitimate users.

I. Introduction

NOWADAYS , networks and autonomous sys-
tems have reached a high level of sophistica-

tion, and the same way failures, attacks, and the
corresponding protection mechanisms have reached a
high level of complexity too. Autonomic computing
and its network-oriented area autonomic network-
ing, are working on self-organizing, self-optimizing,
self-healing, and self-defense methods, in order to
protect networks against these attacks, abuses, and
failures. Also machine learning and artificial intel-
ligence are finding their place as important ingredi-
ents to achieve these self-* capabilities with higher
accuracy, allowing adaptation and adjustment when
simple and static algorithms can not be applied for.
For this automatization, data mining tehcniques are
being used to allow systems and networks to recog-
nise patterns in the system’s behavior and act accu-
rately. Many techniques are available for categoriz-
ing and mining such patterns when they occur at a
single site. But on large distributed systems, inter-
esting patterns may be itself themselves distributed,

1Computer Architecture Dept., Technical University of Cat-
alonia, e-mail: {berral,npoggi}@ac.upc.edu

2Computer Architecture Dept., Barcelona Supercomput-
ing Center, Technical University of Catalonia, e-mail:
{alonso,torres}@ac.upc.edu

3Deptartment of Software, Technical University of Catalo-
nia, e-mail: gavalda@lsi.upc.edu

4Dept. of Electrical and Computer Engineering, Rutgers
University, e-mail: parashar@rutgers.edu

i.e., not visible at once from a single site, so harder
to detect.

Distributed attacks, floodings, and abuses are a
forms of attacks that sometimes are hard to detect
because their resemblance to legitimate connections
or traffic. Distributed denial of services and flood-
ing attacks overwhelm networks and resources send-
ing a great amount of usual-looking packets, opening
many usual-looking connections or requesting many
hard queries to specific services, simultaneously from
a large amount of requesters. This scheme makes dif-
ficult to detect each single attacker because of the
apparently normal behavior of each individual re-
quester. Also, it cannot easily be stopped from the
bordergate access points of the victim network be-
cause each router in the network only sees a part of
the attack, even a negligible part in the case of access
points. For this type of attacks, one must look for
methods where information about suspected attacks
spreads quickly among the intermediate elements be-
fore the attack reaches the victim in full.

DDoS attacks can occur in popular sites and net-
works, motivated by interest or vandalism. DDoS
became famous in 1996 when SYN floods took down
Web servers by attacking the root nameservers.
With only 1000 zombie machines and the trin00
DDoS toolkit [15], a critical server from the Univer-
sity of Minessota was disabled and denied access to
a very large university network. The increasing ap-
pearance of DDoS toolkits and trojans make it nec-
essary to protect networks and critical services from
these attacks, because with a reduced number of ma-
chines and a downloadable toolkit a distributed de-
nial of service can be performed easily against any
given site.

In our approach we present a mechanism where,
using information sharing and machine learning, a
network is able to stop and avoid a distributed at-
tack, abuse, or flooding. Each element shares with
its neighbors information about the status of the net-
work, and aggregates its local information and the
one received to model and classify the traffic it is
receiving. Our mechanism lets each element learn
about the behavior of its portion of network, adjust-
ing its classifiers to its location in the network and
the traffic it typically sees.

In Section II we discuss previous work and ap-
proaches to this area. In Section III the architecture
of the framework and each mechanism are detailed.
In Section IV we explain the how the classifiers work
and how they adapt to their environment. In Sec-
tion V we describe some experiments to validateour

approach. Finally, in Section VI we draw some con-
clusions and anticipate some of our future work.

II. Related Work

Our main reference is the work of Zhang and
Parashar [1]. They defined a cooperative framework
for the detection of DDoS attacks, in which a sub-
set of the network nodes (the overlay network) is
selected. Nodes in the overlay network maintain de-
tection mechanisms for abnormal situations, and ex-
change and aggregate information about traffic con-
dition in different parts of the network. The results
were very satisfactory in the sense that information
sharing between intermediate network nodes allow
them to detect attacks with more accuracy and time-
liness.

More technically, the detection mechanism used
in [1] was the well-known CUSUM (cumulated sum)
algorithm [13] applied to traffic volume. When a
node detected that local traffic became suspiciously
high, it immediately gossiped to p selected neighbors
the key-pair 〈victim,confidence〉, indicating the vic-
tim target and the confidence (or degree of suspicion)
computed by its detectors. Also each node used the
sum of confidences of the received gossips and the
confidence of its own detector to declare that a vic-
tim is under attack. Therefore, note that there are
at least three parameters that have to be set, either
for all nodes at once, or for each node separately:
the threshold that triggers gossiping, the amount p

of gossip spread, and the threshold on the gossips
that triggers an attack declaration. It is, in general,
hard to anticipate a priori the best values for these
parameters.

With a different goal in mind, Poggi et al. [2]
proposed AUGURES, an architecture used to model
users and streams of user requests to websites. The
system prioritizes incoming users and sessions ac-
cording to their expected utility to the system (e.g.,
expected revenue) so that, in case of a system over-
load, only users with high utility are effectively ad-
mitted to the system. They used machine learning
techniques (such as decision trees or Naive Bayes
classifiers) to learn to assign priorities from weblogs
of past activities, and showed that even with sim-
ple learners one can have nontrivial predictive power
about user’s future intentions.

Other techniques have been previously developed
in order to stop denial of service attacks. In [8],
nodes closest to the source are equipped with traffic
ratio detectors. When the traffic ratio mismatches
with the usual one, traffic is limited for the specific
connection retaining the weight of the attack as far
from the victim as possible. Also, a technique us-
ing machine learning has been developed in [3] us-
ing as information the ratio of TCP flags and TCP
connections. Furthermore, heuristics and data min-
ing mechanisms, such as MULTOPS [4], have been
developed in order to stop bandwidth attacks using
statistical information about the traffic.

For our approach, we will use the infrastructure

purposed in [1], complementing it with the power of
adaptivity provided by machine learning induction,
and in particular applying techniques similar to those
in [2]. Furthermore, in order to restrict the attack
strike to the network borders we have added to the
model a backward warning system (not present in
[1]) to stop the attack as close to the source as pos-
sible. So, our network elements will learn to deter-
mine whether the situation is normal or abnormal,
and use this status to determine whether a message
to a particular node should be forwarded or blocked,
if a flooding attack to that node is suspected. This
way, attacks can be stopped much before they reach
the victim, and even very close to the borders of the
network.

III. Network Architecture

A. The Overlay Network

In our approach, a subset of the intermediate net-
work nodes are chosen to belong to an overlay net-
work. Nodes in the overlay network will be equipped
with detection and classification capabilities, and will
exchange gossiping about possible threats and warn-
ings about declared threats. It is important that
nodes in the overlay network are key nodes (like
backbone routers, firewalls, bordergate nodes, and
high adjacency nodes) that see most of the traffic for
the most requested services. In the extreme case, all
routing nodes from the network would be chosen to
belong to the overlay network, although this may be
unfeasible in practice.

B. Classifiers and Detectors

We use detectors and classifiers to distinguish pat-
terns of normal traffic patterns from attacks and
abuses. Classifiers are models that produce predic-
tions, and in particular those that can be trained
using statistical or machine learning techniques. De-
tectors react to changes in specific traffic measures,
such as “amount of traffic towards a given node”,
“relation between amount of traffic sent/received to
a particular service”, or others depending on proto-
cols, message headers, or specific behavior patterns.
In this work we have used only the first, amount
of traffic towards a given node. In particular, for
the moment we do not analyze at all the headers or
contents of the messages. This is partly due to the
complexity of performing this analysis, but also be-
cause we want to concentrate on the particular case
of distributed flooding attacks which, by definition,
have “large amount of traffic” as the only common
feature. However, our framework could handle well
additional information about the packets, if avail-
able, and this could be potentially be very useful in
protecting from flooding and other types of attacks.

In this work we will use CUSUM algorithm to de-
termine when the traffic towards a particular node
changes significantly, but other detection algorithms
can be used. As classifiers, we will use the well-
known Naive Bayes method, which will integrate the
local information plus that shared with the neighbors

to declare when an attack is occurring. More details
about classifiers and how they are used at the nodes
are given in Section IV-A.

C. Information Sharing

To improve the accuracy in classification, each
node must have the maximum global knowledge
about traffic. For this approach there are two kind
of messages that will be shared: gossips, indicating
suspicion of a flooding attack, and warnings, indicat-
ing high certainty of an ongoing attack. An impor-
tant difference is that gossips are sent to and received
from neighbors in any direction of the overlay net-
work, while warnings are sent only in the direction
of (apparent) attackers, in order to strangle attacks
as close to the source as possible.

When a detector (the CUSUM algorithm for traffic
volume) considers that traffic to a victim is increas-
ing in an abnormal way, a gossip is spread among
the neighbors indicating that a victim can be under
attack. In one extreme, all neighbors will receive the
gossip, and in the other extreme, only the next-step-
node will receive the gossip. The message contains
the possible victim ID and the confidence, that is,
the number of gossips received referring to the same
possible victim. Also, when a classifier determines
that a victim is under attack while classifying a mes-
sage destinated to it, a warning is sent to node from
which the message was received (i.e., towards the
source of the attack), and sent too to the neighbors
if required. Each node uses the aggregated gossips
and warnings received as inputs to its classifier.

In other words, the idea of this scheme is the fol-
lowing: With the warnings, victim-closest nodes will
indicate to the bordergate nodes to stop the attack
flow, and with the gossips, the source-closest nodes
will indicate to the intermediate network nodes that
the aggregated traffic is still attempting to enter the
network, instead of letting the attack flow in. The re-
sult should be both to improve the accuracy in classi-
fication, but also, when an attack is detected, to stop
undesired traffic as close to the sources as possible,
thus freeing resources in the network.

D. Node and Network Algorithm

Each node contains the algorithm for classifying
each message passing through it. The algorithm
compares the accumulated sum of means for each
time unit with a characteristic threshold for each
destination. When a message arrives, the accumu-
lated mean for its destination is renewed and if it
reaches the threshold, a gossip is added for that des-
tination. Then, each node accumulates self-gossips
and neighbor-gossips and for each time unit the num-
ber of confidences is checked. If confidences for a ser-
vice are above a concrete threshold, a gossip is sent
to the next node in the service path, and also is sent
to p neighbors. Also, for each time unit (empty time
units included) means and accumulated means are
updated according the last time-unit statistics.

After getting all the statistics of traffic to the mes-

For each received message do:

if accumulated mean > destination threshold:

-increment gossip for destination

endif

if time unit changes:

if gossips for dest. > confidence threshold for dest.:

-send gossip with confidence to forward node

endif

-renew the traffic mean and the accumulated mean

-clean gossips and warnings

endif

-evaluate line <message, gossips for dest., warnings for src.>

if classified as attack:

-increment warning for source

-send warning to backward node

else

-forward message to destination

endif

endfor

Fig. 1. Message evaluation algorithm in each node

sage destination, a classifier evaluates the message
attributes including the gossips for the destination
and the warnings for the source. If classifier con-
cludes that the message belongs to an attack, the
message is not forwarded and also a warning is sent
to the backward node. The evaluation algorithm is
given in Figure 1.

IV. Network Learning and Classification

Given that each node on the network has different
characteristics depending on the context and the net-
work situation, configuring with accuracy a classifier
becomes a problem. The classifier must be adjusted
to the node detectors, the level of trust to a con-
crete gossip, and the amount or type of usual traffic
passing through the node.

A. Training the Network

Each node is equipped with a learner/classifier,
so machine learning can give each node the ability
to adapt their thresholds of gossip trusting and de-
tection mechanisms for each victim or source to the
node situation. The only thing that needs to be done
is to train each node on its typical traffic and in situ-
ations denoting an attack. For that, a training data
set must be obtained capturing samples of traffic and
samples of attacks or abuses. If not available, simu-
lations or workloads can be used, that clearly reflect
different the volumes of traffic corresponding to at-
tacks and non-attacks.

We model the traffic with a tuple of only four
attributes: destination, source, warnings received
about the source being an attacker, and gossips
about suspicion of attack to the victim. One could
add more relevant attributes, although we have not
done it so far in our experiments.

We next describe the particular learning and clas-
sifier we have used, the Naive Bayes method. In
this method, the different message attributes are sup-
posed to be statistically independent. Although ob-
viously they are not, this assumption leads to an
efficient and simply classifier that usually does well
in practice, so it is a good starting point before more
complex classifiers are tried out.

To describe the method, we use the following no-

tation for converting a boolean value to an integer:
given two numbers a and b, we denote

a ≶ b =

{

1 if a > b,

0 if a ≤ b.

Given a message m, regarded a a tuple
〈src, warn, dest, gossip〉, the Naive Bayes
method computes estimates of Pr(attack|m)
and Pr(noattack|m) and simply predicts “attack” if
Pr(attack|m) ≶ Pr(noattack|m), and “no attack”
otherwise. These two probabilities are computed
using Bayes’ Theorem, e.g.:

Pr(attack|m) =
Pr(m|attack) · Pr(attack)

Pr(m)
(1)

Observe that Pr(m) can be desregarded because
we only care about the ratio of Pr(attack|m) and
Pr(nonattack|m). Pr(attack) and Pr(nonattack)
can be estimated from the training data, locally to
each node. To estimate Pr(m|attack) we use the in-
dependence assumption, as follows:

Pr(m|atk) = Pr(〈src, warn, dst, gossip〉|atk)

= Pr(src, warn|atk) · Pr(dst, gossip|atk).

Note that we have grouped source and warning to-
gether since naturally a message arrives to this node
with information about its source and the number
of warnings for the source, while the level of current
gossip for a particular destination is added to it by
the node from the table kept locally. Thus, it does
not make much sense to further split the probability
in four. Now again, these two probabilities can be es-
timated from the empirical distribution of messages
in the training data as follows:

• Pr(src, warn|attack) = Pr(src,warn,attack)
Pr(attack) .

• Pr(dst, gossip|attack) = Pr(dst,gossip,attack)
Pr(attack) .

• Pr(attack) is the attack ratio at this node.

All in all when an attack occurs, one can expect
the following three phases, which we have indeed ob-
served in our simulations:

• A ramp-on phase, where the malicious load in-
creases abnormally. The attack is not yet de-
tected but the of gossips increases. Nodes ag-
gregate all the knowledge about neighborhood
traffic against the victim.

• The detection and reaction phase. The number
of gossips triggers some classifiers and attack-
ing traffic is increasingly. Traffic decreases but
gossips and warnings keep circulating in substi-
tution of the attack load (volume of gossips and
warnings is extremely lower than the attack vol-
ume).

• The stabilization of the attack. Warnings arrive
to bordergate nodes, and the attack is stopped
very close to the border. Gossips keep all the
bordergate nodes informed about the continua-
tion of the attack.

V. Experiments

In this section we describe our experiments in this
framework. The goal of these experiments is to check
that the detection and classification algorithms be-
have as we expect, and to test the effectiveness of the
method at detecting and stopping attacks early.

For the detection algorithms, we will trace the vol-
ume of traffic produced during a normal status and
during an attack, to check the evolution of gossip
messages and confidence, and the relation with the
volume of normal traffic. For the classifier we will
check the effectiveness of this during the whole test
and monitor both true detections and false alarms
(false positives).

A. Environment

For the experimentation, a simulated network us-
ing OmNET++ [11] has been built. We use the
OmNET online simulator because of its capability of
simulating real networks with maximum detail, in-
cluding time and protocols. We have used the high-
level topology of the network of the Technical Uni-
versity of Catalonia, and as traffic model we have
used logs of normal HTTP 1.1 sessions from differ-
ent entrance point of the network to an HTTP server
inside. The network will run in normal status until a
distributed denial of service attack begins, flooding
the path to the service and interfering with normal
connections. Also, we have equipped the intermedi-
ate network nodes and the bordergate nodes with the
detection mechanisms and the classifiers described in
the previous sections.

For simplicity, we have chosen a single destination
(service) as potential victim, and view the rest of
the network as a tree-like structure from a bunch
of clients to the service. Therefore, the distributed-
attack critical points, where the attack will be de-
tected first, will be those closest to the service.

The network consists of a gigabit ethernet. It con-
tains the bordergate routers, the access points to
our network, as well as intermediate nodes connect-
ing these access points to services. Each client can
be understood as an access point for several clients,
and not only as a single and final client, just like
the attackers can be understood as access points for
several attackers. The gossiping level for our test is
just gossiping the confidence to the successor node
in the path to the victim, and also for the warning
level, sending warnings only to the previous node.
Also, clients have been modeled as HTTP clients,
with variable thinking times and session times. The
attackers are configured to make requests continu-
ously without waiting any response, with a reason
of 500-1000 attack packets against each legitimate
package.

B. Experiments and Results

First of all the system must be trained. For
this learning phase we will run the network with
well-behaved client request streams to collect non-
attacking data, and some attacks to collect the at-

tack behaviors to be modeled. The advantage of us-
ing OmNET is that this toolkit comes with usual
client and service patterns, and these patterns can
be adjusted to HTTP, FTP and other existing or
wanted models. Also, random factors can be added
in order to randomize in a common range some client
and service variables like thinking time, start time,
request sizes, intervals between sessions, and more,
so each run becomes lightly different letting us to not
overadjust our models and not being restricted to a
only one concrete situation. So, training must be
done while gossips are enabled, and warnings should
be set temporarily disabled (we are not depending
on classifiers yet).

Looking at the results of the Naive Bayes machine
learner, it can be observed what was expected: First,
the attack probability for warnings increases with the
number of warnings, while the probability of non-
attack decreases attack. Second, for a low number of
gossips, the probabilities remain stable until a rela-
tive high number of gossips, where the attack prob-
ability increases, becoming zero the no attack prob-
ability. Also, the source and destination conditional
probabilities follow the expected behavior too. The
fact that each attribute has its own probability chart
will ensure to us that the system will not only mem-
orize the attack destinations for classifying traffic.

For traffic behavior, Figure 2 shows the mean num-
ber of received messages for each node. Comparing
the network with and without discrimination mech-
anism at the nodes, we can observe that messages
are reduced during the attack, except on the border-
gate nodes, where all attack arrives but does not pass
through. Also, bordergate nodes receive the extra
amount of messages referring to the retransmission
from rejected messages. Evidently a gossip message
can not be compared to the flooding messages. And
for the gossip system, we tested the behavior of the
algorithm in front of usual traffic and attacks, and it
was just as expected too. In Figure 3 the accumu-
lated traffic behavior is shown, and we can observe
that without the mechanism, during an attack all
nodes receive attacking traffic, while using the classi-
fication mechanism only the bordergate nodes receive
its impact, but stop it almost completely, thus free-
ing the intermediate network and the victim server
of being flooded.

In Figure 4 we show the evolution of attack con-
fidences (level of gossip) over time. The two plots
in each represent the accumulated traffic at border-
gate nodes and at intermediate nodes. At time 400,
an attack starts flooding the paths to the target ser-
vice. The level of traffic at the bordergate nodes
remains high until the end of attack. Without the
detection mechanism, it can be seen that the accu-
mulated traffic at intermediate nodes is essentially
the same as that received in the bordergates, since
no messages are blocked. On the other hand, with
the detection mechanism, the traffic seen by the in-
termediate nodes is a fraction of the traffic at the
bordergate nodes.

Fig. 2. Messages received for each node, without and with
the mechanism

Fig. 3. Aggregated Traffic for each node, without and with
the mechanism

Finally, for the machine learner, observing the re-
sults of classification we can see that the NaiveBayes
classifier has high accuracy (above 95%) and all clas-
sification mistakes are false negatives, that is, some
attacking messages are let through. We observe no
false positives: when no attack is occurring, all traf-
fic arrives to the destination service. Moreover, most
of the mistakes in one node are corrected in the next
node in the path to the victim.

As a result, our experiments have demonstrated
that detection and classification systems work as
well, stopping all flooding traffic as close to the
source as possible, freeing the intermediate network
of flooding traffic and preventing service overload
during the attack. The classifiers classified flood-
ing traffic with accuracy above 95%, with no false
positives. The false negatives (attacking messages
not classified as such) at the bordergate nodes are
stopped in the intermediate network, but far enough
from victim service. More precisely, in these experi-
ments less than 1% of the attacking messages arrived
at its destination.

VI. Conclusions and Future Work

In order to avoid distributed denial of service at-
tacks and flooding attacks or abuses, we have pre-
sented a mechanism based on sharing information
and machine learning, which enables the network to

Fig. 4. Evolution of Confidences at nodes

stop these attacks early and close to the sources. Pre-
vious approaches that we are aware of used static
techniques or adaptive techniques based on collect-
ing information and treating it with predefined, pre-
tunes, models. In our approach, a learning compo-
nent lets the system create, adjust, and renew the
behavior models. Each element of the network learns
from its local traffic patterns and shares this infor-
mation with the other elements so that each one has
aggregated information about the network. This in-
formation is collected in a local model or classifier.
At prediction time, again information about the state
of the network circulates among the nodes, but the
information is this time passed through the classi-
fier, which determines with high confidence whether
messages for a given destination belong to an attack.

We have tested the method simulating the topol-
ogy of the Technical University of Catalonia and
real volumes of attacking and nonattacking traffic
with OmNET++ and attacking it. Our mechanism
produces good results: attacking traffic is identified
as such with accuracy over 95%, and most of it is
stopped essentially at the bordergate nodes. Less
than 1% of the unwanted traffic arrived to the vic-
tim server, thus essentially posing no thread. When
no attack is taking place, all of the legitimate traffic
arrives to its destination.

There are a good number of issues to be inves-
tigated further. One could of course try more ad-
vanced methods for message classification. Given the
very sketchy information we now consider about each
message (source, warnings, destination, and gossips)
there is little point in trying to improve on the (ex-
tremely high) accuracy. Observe that one of the main
drawbacks of our approach so far is that, when a ser-
vice is under attack, all traffic to it is blocked. This
is unavoidable if only the traffic volume is taken into
account. So the problem of interest is to open up
the messages and use information the packets inside
for finer classification, that is, really discriminating
on a message-per-message basis whether it is legiti-
mate or malicious. This classification problem has of
course been studied elsewhere; our goal in this work
was, for the moment, designing and validating the
information-sharing scheme.

Another issue before the system becomes practi-
cal at large networks is that of memory usage at
each node. Right now, each node keeps a table of
all source and destination nodes it has seen. This is
all right for nodes of moderate size, where the num-
ber of access points and destination services is in the
order of, say, hundreds. For large-scale networks,
this is of course impossible. We plan on using so-
called sketching techniques for keeping only informa-
tion about those addresses generating and receiving
the highest volumes of traffic at any given period,
which are precisely those that are involved in flood-
ing attacks.

Acknowledgments

This research work is carried out in part under
the FP6 Network of Excellence Core-GRID funded
by the European Commission (Contract IST-2002-
004265). Also this work has been supported by the
Spanish Ministry of Education and Science (projects
TIN2007-60625). Professor R. Gavaldà is partially
supported by the EU PASCAL2 Network of Excel-
lence and by the DGICYT MOISES-BAR project,
TIN2005-08832-C03-03.

Bibliography

[1] G. Zhang, M. Parashar. Cooperative Defense Against
DDoS Attacks. Journal of Research and Practice in In-
formation Technology (JRPIT), Australian Computer So-
ciety Inc., February 2006.

[2] N. Poggi, T. Moreno, J. Berral, R. Gavaldà, J. Torres.
Web customer modeling for automated session prioritiza-
tion on high traffic sites. Proc. 11th Conf. on User Mod-
elling (UM2007). Springer Lecture Notes in Computer Sci-
ence 4511, 450–454, 2007.

[3] S. Noh, C. Lee, K. Choi, G. Jung. Detecting Dis-
tributed Denial of Service (DDoS) Attacks through Induc-
tive Learning. Proc. IDEAL 2003. Springer Lecture Notes
in Computer Science 2690, 286–295, 2003.

[4] T.M. Gil, M. Poletto. MULTOPS: a data struchture for
bandwith attack detection. Proc. of the 10th USENIX Se-
curity Symposium.

[5] W.W. Streilein, D.J. Fried, R.K. Cunningham. De-
tecting Flood-based Denial-of-Service Attacks with
SNMP/RMON.

[6] K. Rieck, P. Laskov. Language Models for Detection of
Unknown Attacks in Network Traffic. Journal of Com-
puter Virology 4, 2007.

[7] A. Quiroz, M. Parashar, N. Sharma. Decentralized Clus-
tering Analysis and Online Anomaly Detection for Peer
Grid Systems. Technical Report, CAIP Rutgers, 2006.

[8] J. Mirković, G. Prier, P. Reiher. Attacking DDoS at the
source Technical Report, Computer Science Department,
University of California, 2002.

[9] A.D. Keromytis, V. Misra, D. Rubenstein. Using Overlays
to Improve Network Security. Technical Report, Columbia
University, 2002.

[10] R. Nou, J. Guitart, V. Beltran, D. Carrera, L. Montero,
J. Torres, E. Ayguadé. Simulating complex systems with
a low-detail model. 16th Paralelism Meeting, Granada,
Spain, September 2005.

[11] http://www.omnetpp.org. Objective Modular Network
Testbed in C++

[12] S.M. Williams, B.R. Parry, M.M. Schlup. Quality control:
an application of the CUSUM. British Medical Journal,
1992.

[13] M.S. Srivastava, Y. Wu. Comparison of EWMA,
CUSUM and Shiryayev-Roberts procedures for detecting
a shift in the mean. Annals of Statistics, 1993.

[14] H. Wang, D. Zhang, K. G. Shin. Detecting SYN flooding
attacks. Proc. IEEE Infocom’2002. June 2002.

[15] http://staff.washington.edu/dittrich/misc/trinoo.analysis
The DoS Project’s ”trinoo” distributed denial of service
attack tool Website date: 2008

