
Database Integrated Analytics using R: Initial
Experiences with SQL-Server + R

Josep Ll. Berral and Nicolas Poggi
Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (BarcelonaTech)

Barcelona, Spain

Abstract—Most data scientists use nowadays functional or
semi-functional languages like SQL, Scala or R to treat data,
obtained directly from databases. Such process requires to fetch
data, process it, then store again, and such process tends to
be done outside the DB, in often complex data-flows. Recently,
database service providers have decided to integrate “R-as-a-
Service” in their DB solutions. The analytics engine is called
directly from the SQL query tree, and results are returned as
part of the same query. Here we show a first taste of such
technology by testing the portability of our ALOJA-ML analytics
framework, coded in R, to Microsoft SQL-Server 2016, one of
the SQL+R solutions released recently. In this work we discuss
some data-flow schemes for porting a local DB + analytics engine
architecture towards Big Data, focusing specially on the new
DB Integrated Analytics approach, and commenting the first
experiences in usability and performance obtained from such
new services and capabilities.

I. INTRODUCTION

Current data mining methodologies, techniques and algo-

rithms are based in heavy data browsing, slicing and process-

ing. For data scientists, also users of analytics, the capability

of defining the data to be retrieved and the operations to be

applied over this data in an easy way is essential. This is the

reason why functional languages like SQL, Scala or R are so

popular in such fields as, although these languages allow high

level programming, they free the user from programming the

infrastructure for accessing and browsing data.

The usual trend when processing data is to fetch the data

from the source or storage (file system or relational database),

bring it into a local environment (memory, distributed workers,

...), treat it, and then store back the results. In such schema

functional language applications are used to retrieve and slice

the data, while imperative language applications are used to

process the data and manage the data-flow between systems.

In most languages and frameworks, database connection pro-

tocols like ODBC or JDBC are available to enhance this data-

flow, allowing applications to directly retrieve data from DBs.

And although most SQL-based DB services allow user-written

procedures and functions, these do not include a high variety

of primitive functions or operators.

The arrival of the Big Data favored distributed frameworks

like Apache Hadoop and Apache Spark, where the data is

distributed “in the Cloud” and the data processing can also be

distributed where the data is placed, then results are joined

and aggregated. Such technologies have the advantage of

distributed computing, but when the schema for accessing data

and using it is still the same, just that the data distribution is

transparent to the user. Still, the user is responsible of adapting

any analytics to a Map-Reduce schema, and be responsible of

the data infrastructure.

Recently, companies like Microsoft, IBM or Cisco,

providers of Analytics as a Service platforms, put special

effort into complementing their solutions by adding script-

ing mechanisms into their DB engines, allowing to embed

analytics mechanisms into the same DB environment. All of

them selected R [17] as a language and analytics engine, a

free and open-source statistical oriented language and engine,

embraced by the data mining community since long time ago.

The current paradigm of “Fetch from DB, Process, Dump to

DB” is shifted towards an “In-DB Processing” schema, so the

operations to be done on the selected data are provided by

the same DB procedures catalog. All the computation remains

inside the DB service, so the daily user can proceed by simply

querying the DB in a SQL style. New R-based procedures,

built-in or user created by invoking R scripts and libraries, are

executed as regular operations inside the query execution tree.

The idea of such integration is that, not only this processing

will be more usable by querying the DB, where the data is

managed and distributed, but also will reduce the overhead

of the data pipe-line, as everything will remain inside a

single data framework. Further, for continuous data processing,

analytics procedures and functions can be directly called from

triggers when data is continuously introduced or modified.

As a case of use of such approach, in this paper we present

some experiences on porting the ALOJA framework [13] to

the recently released SQL-Server 2016, incorporating this R-

Service functionality. The ALOJA-ML framework is a col-

lection of predictive analytics functions (machine learning

and data mining), written in R, originally purposed for mod-

eling and prediction High Performance Computing (HPC)

benchmarking workloads as part of the ALOJA Project [16],

deployed to be called after retrieving data from a MySQL

database. Such project collects traces and profiling of Big

Data framework technologies, and analyzing this data requires

predictive analytics. These procedures are deployed in R, and

communicating the framework with the database and R engine

results in a complex architecture, with a fragile data-pipeline

and susceptible to failures.

In this work we present how we could adapt our current

data-processing approach to a more Big-Data oriented archi-

2016 IEEE 16th International Conference on Data Mining Workshops

2375-9259/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDMW.2016.155

1

tecture, and how we tested using the ALOJA data-set [12], as

an example and as a review from the user’s point of view.

After testing the Microsoft version of SQL+R services [10],

we saw that the major complication, far away of deploying

the service, is to build the SQL wrapping procedures for the

R scripts to be executed. When reusing or porting already

existing code or R applications, the wrapper just has to source
(R function for “import”) the original code and its libraries,

and execute the corresponding functions (plus bridging the

parameters and the return of this function). Current services

are prepared to transform 2 dimensional R Data Frames into

tables, as a result of such procedures. Aside of Microsoft

services, we took a look into Cisco ParStream [6], displaying

a very similar approach, differing on the way of instantiating

the R scripts through R file calls instead of direct scripting.

It remains for the future work to test and compare the per-

formances among platforms, also to include some experiences

with IBM PureData Services [7] and any other new platform

providing such services.

This article is structured as follows: Section II presents

the current state-of-art and recent approaches used when

processing data from databases. Section III explains the current

and new data-flow paradigm, and required changes. Section IV

shows some code porting examples from our native R scripts to

Microsoft SQL Server. Section V provides comments and de-

tails on some experiments on running the ALOJA framework

in the new architecture. Finally, section VI summarizes this

current work and presents the conclusions and future work.

II. STATE OF THE ART

Current efforts on systems processing Big Data are mostly

focused on building and improving distributed systems. Plat-

forms like Apache Hadoop [1] and Apache Spark [4], with

all their “satellite” technologies, are on the rise on Big Data

processing environments. Those platforms, although being

originally designed towards Java or Python applications, the

significant weight of the data mining community using R,

Scala or using SQL interfaces, encouraged the platforms strate-

gists over the years to include interfaces and methodologies for

using such languages. Revolution Analytics published in 2011

RHadoop [9], a set of packages for R users to launch Hadoop

tasks. Such packages included HDFS [14] and HBase [2] han-

dlers, with Map-Reduce and data processing function libraries

adapted for Hadoop. This way, R scripts could dispatch par-

allelizable functions (e.g. R “apply” functions) to be executed

in distributed worker computing machines.

The Apache Spark platform, developed by the Berkeley’s

AMPlab [11] and Databricks [5] and released in 2014, focuses

on four main applied data science topics: graph processing,

machine learning, data streaming, and relational algebraic

queries (SQL). For these, Spark is divided in four big pack-

ages: GraphX, MLlib, SparkStream, and SparkSQL. SparkSQL

provides a library for treating data through SQL syntax or

through relational algebraic functions. Also recently, a R

scripting interface has been added to the initial Java, Python

and Scala interfaces, through the SparkR package, providing

the Spark based parallelism functions, Map-Reduce and HBase

or Hive [3] handlers. This way, R users can connect to

Spark deployments and process data frames in a Map-Reduce

manner, the same way they could do with RHadoop or using

other languages.

Being able to move the processing towards the database

side becomes a challenge, but allows to integrate analytics

into the same data management environment, letting the same

framework that receives and stores data to process it, in the

way it is configured (local, distributed...). For this purpose,

companies providing database platforms and services put effort

in adding data processing engines as integrated components to

their solutions. Microsoft recently acquired Revolution Analyt-

ics and its R engine, re-branded as R-Server [8], and connected

to the Microsoft SQL-Server 2016 release [10]. IBM also

released their platform Pure Data Systems for Analytics [7],

providing database services including the vanilla R engine

from the Comprehensive R Archive Network [17]. Also Cisco

recently acquired ParStream [6], a streaming database product

incorporating user defined functions, programmable as shared

object libraries in C++ or as external scripts in R.

Here we describe our first approach to integrate our R-based

analytics engine into a SQL+R platform, the Microsoft SQL-

Server 2016, primarily looking at the user experience, and

discussing bout cases of use where one architecture would be

preferred over others.

III. DATA-FLOW ARCHITECTURES

Here we show three basic schemes of data processing,

the local ad-hoc schema of pull-process-push data, the new

distributed schemes for Hadoop and Spark, and the “In-

DataBase” approach using the DB integrated analytics ser-

vices. Point out that there is not an universal schema that

works for each situation, and each one serves better or

worse depending on the situation. As an example we put the

case of the ALOJA-ML framework as an example of such

architectures, how it currently operates, the problematic, and

how it would be adapted to new approaches.

A. Local Environments

In architectures where the data and processing capacity is in

the same location, having data-sets stored in local file systems

or direct access DBs (local or remote databases where the

user or the application can access to retrieve or put data).

When an analytics application wants to process data, it can

access the DB to fetch the required data, store locally and

then pass to the analytics engine. Results are collected by

the application and pushed again to the DB, if needed. This

is a classical schema before having distributed systems with

distributed databases, or for systems where the processing is

not considered big enough to build a distributed computing-

power environment, or when the process to be applied on data

cannot be distributed.

For systems where the analytics application is just a user

of the data, this schema might be the corresponding one, as

the application fetches the data it is granted to view, then

2

do whatever it wants with it. Also for applications where

computation does not require select big amounts of data, as

the data required is a small fraction of the total Big Data, it is

affordable to fetch the slice of data and process it locally. Also

on systems where using libraries like snowfall [X], letting the

user to tune the parallelism of R functions, can be deployed

locally up to a point where this distribution requires heavier

mechanisms like Hadoop or Spark.

There are mechanisms and protocols, like ODBC or JDBC

(e.g. RODBC library for R), allowing applications to access

directly to DBs and fetch data without passing through the file

system, but through the application memory space. This is, in

case that the analytics application has granted direct access to

the DB and understands the returning format. Figure 1 shows

both archetypical local schemes.

Fig. 1. Schema of local execution approaches, passing data through the File
System or ODBC mechanisms

In the first case of Figure 1 we suppose an scenario where

the engine has no direct access to DB, as everything that

goes into analytics is triggered by the base application. Data

is retrieved and pre-processed, then piped to the analytics

engine through the file system (files, pipes, ...). This requires

coordination between application and engine, in order to

communicate the data properly. Such scenarios can happen

when the DB, the application and the engine do not belong

to the same organization, or when they belong to services

from different providers. Also it can happen when security

issues arise, as the analytics can be provided by a not-so-

trusted provider, and data must be anonymized before exiting

the DB.

Also, if the DB and analytics engine are provided by the

same service provider, there will be means to communicate the

storage with the engine in an ODBC or other way, allowing

to fetch the data, process, and then return the results to the

DB. As an example, the Microsoft Azure-ML services [15]

allow the connection of its machine learning components with

the Azure storage service, also the inclusion of R code as

part of user-defined components. In such service, the machine

learning operations do not happen on the storage service, but

data is pulled into the engine and then processed.

At this moment, the ALOJA Project, consists of a web user

interface (front-end and back-end), a MySQL database and

the R engine for analytics, used this schema of data pipe-line.

The web interface provided the user the requested data from

the ALOJA database, and then displayed in the front-end. If

analytics were required, the back-end dumped the data to be

treated into the file system, and then started the R engine.

Results were collected by the back-end and displayed (also

stored in cache). As most of the information passed through

user filters, this data pipe-lining was preferred over the direct

connection of the scripts with the DB. Also this maintained the

engine independent of the DB queries in constant development

at the main framework.

Next steps for the project are planned towards incorporating

a version of the required analytics into the DB, so the back-

end of the platform can query any of the provided analytics,

coded as generic for any kind of input data, as a single SQL

query.

B. Distributed Environments

An alternative architecture for the project would be to

upload the data into a Distributed Database (DDB), thinking

on expanding the ALOJA database towards Big Data (we still

have Terabytes of data to be unpacked into the DB and to be

analyzed at this time). The storage of the data could be done

using Hive or HBase technologies, also the analytics could be

adapted towards Hadoop or Spark. For Hadoop, the package

RHadoop could handle the analytics, while the SparkSQL +

SparkR packages could do the same for Spark. Processing

the analytics could be done on a distributed system with

worker nodes, as most of the analytics in our platform can be

parallelized. Further, Hadoop and Spark have machine learning

libraries (Mahout and MLlib) that could be used as native

instead of some functionalities of our ALOJA-ML framework.

Figure 2 shows the execution schema of this approach.

Such approach would concentrate all the data retrieval

and processing in a distributed system, not necessarily near

the application but providing parallelism and agility on data

browsing, slicing and processing. However, this requires a

complex set-up for all the involved services and machines,

and the adaption of the analytics towards parallelism in a

different level than when using snowfall or other packages.

SparkR provides a Distributed Data-Frame structure, with

similar properties than regular R data-frames, but due to the

distributed property, some classic operations are not available

3

Fig. 2. Schema of distributed execution approach, with Distributed Databases
or File Systems

or must be performed in a different way (e.g. column binding,

aggregates like “mean”, “count”...).

This option would be chosen at that point where data is

large enough to be dealt with a single system, considering that

DB managers do not provide means to distribute and retrieve

data. Also, like in the previous approach, the data pipe-line

passes through calling the analytics engine to produce the

queries and invoke (in a Map-Reduce manner) the analytics

when parallelizable, or collect locally data to apply the non-

parallelizable analytics. The price to be paid would be the set-

up of the platform, and the proper adjustment of the analytics

towards a Map-Reduce schema.

C. Integrated Analytics

The second alternative to the local analytics schema is to

incorporate those functions to the DB services. At this point,

the DB can offer Analytics as a Service, as users can query

for analytics directly to the DB in a SQL manner, and data

will be directly retrieved, processed and stored by the same

framework, avoiding the user to plan a full data pipe-line.

As the presented services and products seem to admit R

scripts and programs directly, no adaption of the R code

is required. The effort must be put in coding the wrapping

procedures for being called from a SQL interface. Figure 3

shows the basic data-flow for this option.

Fig. 3. Schema of “In-DB” execution approach

The advantages of such approach are that 1) analytics, data

and data management are integrated in the same software

package, and the only deployment and configuration is of

the database; 2) the management of distributed data in Big

Data deployments will provided by the same DB software

(whether this is implemented as part of the service!), and the

user doesn’t need to implement Map-Reduce functions but data

can be aggregated in the same SQL query; 3) simple DB users

can invoke the analytics though a SQL query, also analytics

can be programmed generically to be applied with any required

input SQL query result; 4) DBs providing triggers can produce

Continuous Analytic Queries each time data is introduced or

modified.

This option still has issues to be managed, such as the capac-

ity of optimization and parallelism of the embedded scripts. In

the case of the Microsoft R Service, any R code can be inserted

inside a procedure, without any apparent optimization to be

applied as any script is directly sent to a external R sub-service

managed by the principal DB service. Such R sub-service

promises to apply multi-threading in Enterprise editions, as the

classic R engine is single-thread, and multi-threading could

be applied to vectorization functions like “apply”, without

having to load the previously mentioned snowfall (loadable

as the script runs on a compatible R engine). Also, comparing

this approach to the distributed computing system, if the

service supports “partitioning” of data according to determined

columns and values, SQL queries could be distributed in a

cluster of machines (not as replication, but as distribution),

and aggregated after that.

IV. ADAPTING AND EMBEDDING CODE

According to the SQL-Server published documentation and

API, the principal way to introduce external user-defined

scripts is to wrap the R code inside a Procedure. The SQL-

Server procedures admit the script, that like any “Rscript” can

source external R files and load libraries (previously copied

into the corresponding R library path set up by the Microsoft

R Service), also admit the parameters to be bridged towards

the script, and also admit SQL queries to be executed previous

to start the script for filling input data-frames. The procedure

also defines the return values, in the form of data-frames as

tables, values or a tuple of values.

When the wrapping procedure is called, input SQL queries

are executed and passed as input data-frame parameters, direct

parameters are also passed to the script, then the script is

executed in the R engine as it would do a “Rscript” or a script

dumped into the R command line interface. The variables

mapped as outputs are returned from the procedure into the

invoking SQL query.

Figure 4 shows an example of calling ALOJA-ML functions

in charge of learning a linear model from the ALOJA data-

set, read from a file while indicating the input and output

variables; also calling a function to predict a data-set using

the previously created model. The training process creates a

model and its hash ID, then the prediction process applies the

model to all the testing data-set. In the current ALOJA data

pipe-line, “ds” should be retrieved from the DB (to a file to

be read, or directly to a variable if RODBC is used). Then

4

source("functions.r");
library(digest);

Training Process
model <- aloja_linreg(ds = read.table("aloja6.csv"), vin = c("maps","iofilebuf"), vout = "exe_time");
id_hash <- digest(x = model, algo = "md5"); # ID for storing the model in DB

Prediction Example
predictions <- aloja_predict_dataset(learned_model = model, ds = read.table("aloja6test.csv"));

Fig. 4. Example of modeling and prediction example using the ALOJA-ML libraries. Loading ALOJA-ML functions allow the code to execute “aloja linreg”
to model a linear regression, also “aloja predict dataset” to process a new data-set using a previously trained model.

the results (“model”, “id hash” and “predictions”) should be

reintroduced to the DB using again RODBC, or writing the

results into a file and the model into a serialized R object file.

Figures 5 and 6 show how this R code is wrapped as

procedure, and examples of how these procedures are invoked.

Using this schema, in the modeling procedure, “ds” would be

passed to the procedure as a SQL query, “vin” and “vout”

would be bridged parameters, and the “model” and “id hash”

would be returned as a two values (a serialized blob/string

and a string) that can be saved into a models table. The return

would be introduced into the models table. Also the prediction

procedure would admit an “id hash” for retrieving the model

(using a SQL query inside the procedure), and would return a

data-frame/table with the row IDs and the predictions.

We observed that, when preparing the embedded script, all

sources, libraries and file paths must be prepared like a Rscript

to be executed from a command line. The environment for the

script must be set-up, as it will be executed each time in a

new R session.

In the usual work-flow on ALOJA-ML tools, models (R

serialized objects) are stored in the file system, and then

uploaded in the database as binary blobs. Working directly

from the DB server allow to directly encode serialized objects

into available DB formats. Although SQL-Server includes a

“large binary” data format, we found some problems when

returning binary information from procedures (syntax not

allowing the return of such data type in tuples), thus serialized

objects can be converted to text-formats like base64 to be

stored as a “variable size character array”.

V. EXPERIMENTS AND EXPERIENCES

A. Usability and Performance

For testing the approach we used the SQL-Server 2016

Basic version, with the R Service installed and with Windows

Server 2012, from a default image available at the Azure

repositories. Being the basic service, and not the enterprise,

we assumed that R Services would not provide improvements

on multi-threading, so additional packages for such functions

are installed (snowfall). The data from the ALOJA data-set is

imported through the CSV importing tools in the SQL-Server

Manager framework, the “Visual-Studio”-like integrated de-

velopment environment (IDE) for managing the services.

Data importing displayed some problems, concerning to

data-type transformation issues, as some numeric columns

couldn’t be properly imported due to precision and very big

values, and had to be treated as varchar (thus, not treatable

as number). After making sure that the CSV data is properly

imported, the IDE allowed to perform simple queries (SE-

LECT, INSERT, UPDATE). At this point, tables for storing

pair-value entries, containing the models with their specific

ID hash as key, is created. Procedures wrapping the basic

available functions of ALOJA-ML are created, as specified

in previous section IV. After executing some example calls,

the system works as expected.

During the process of creating the wrapping procedures

we found some issues, probably non-reported bugs or system

internal limitations, like the fact that a procedure can return a

large binary type (large blob in MySQL and similar solutions),

also can return tuples of diverse kinds of data types, but it

crashed with an internal error when trying to return a tuple

of a varchar and a large binary. Workarounds were found

by converting the serialized model object (binary type) into

a base64 encoding string (varchar type), to be stored with

its ID hash key. As none information about this issue was

found in the documentation, at the day of registering these

experiences, we expect that such issues will be solved by the

development team in the future.

We initially did some tests using the modeling and pre-

diction ALOJA-ML functions over the data, and comparing

times with a local “vanilla” R setup, performance is almost

identical. This indicating that with this “basic” version, the R

Server (former R from Revolution Analytics) is still the same

at this point.

Another test done was to run the outliers classification
function of our framework. The function, explained in detail

in its corresponding work [13], compares the original output

variables with their predictions, and if the difference is k times

greater than the expected standard deviation plus modeling er-

ror, and it doesn’t have enough support from similar values on

the rest of the data-set, such data is considered an outlier. This

implies the constant reading of the data table for prediction

and for comparisons between entries. The performance results

were similar to the ones on a local execution environment,

measuring only the time spent in the function. In a HDI-

A2 instance (2 virtual core, only 1 used, 3.5GB memory),

5

%% Creation of the Training Procedure, wrapping the R call
CREATE PROCEDURE dbo.MLPredictTrain @inquery nvarchar(max), @varin nvarchar(max),

@varout nvarchar(max) AS
BEGIN
EXECUTE sp_execute_external_script
@language = N’R’,
@script = N’

source("functions.r");
library(digest); library(base64enc);
model <- aloja_linreg(ds = InputDataSet, vin = unlist(strsplit(vin,",")), vout = vout);
serial <- as.raw(serialize(model, NULL));
OutputDataSet <- data.frame(model = base64encode(serial),

id_hash = digest(serial, algo = "md5"));
’,
@input_data_1 = @inquery,
@input_data_1_name = N’InputDataSet’,
@output_data_1_name = N’OutputDataSet’,
@params = N’@vin nvarchar(max), @vout nvarchar(max)’,
@vin = @varin,
@vout = @varout
WITH RESULT SETS (("model" nvarchar(max), "id_hash" nvarchar(50)));
END

%% Example of creating a model and storing into the DB
INSERT INTO aloja.dbo.trained_models (model, id_hash)
EXEC dbo.MLPredictTrain @inquery = "SELECT exe_time, maps, iofilebuf FROM aloja.dbo.aloja6",

@varin = "maps,iofilebuf", @varout = "exe_time"

Fig. 5. Version of the modeling call for ALOJA-ML functions in a SQL-Server procedure. The procedure generates the data-set for “aloja linreg” from a
parametrized query, also bridges the rest of parameters into the script. It also indicates the format of the output, being a value, a tuple or a table (data frame).

%% Creation of the Predicting Procedure, wrapping the R call
CREATE PROCEDURE dbo.MLPredict @inquery nvarchar(max), @id_hash nvarchar(max) AS
BEGIN
DECLARE @modelt nvarchar(max) = (SELECT TOP 1 model FROM aloja.dbo.trained_models

WHERE id_hash = @id_hash);
EXECUTE sp_execute_external_script
@language = N’R’,
@script = N’

source("functions.r");
library(base64enc);
results <- aloja_predict_dataset(learned_model = unserialize(as.raw(base64decode(model))),

ds = InputDataSet);
OutputDataSet <- data.frame(results);

’,
@input_data_1 = @inquery,
@input_data_1_name = N’InputDataSet’,
@output_data_1_name = N’OutputDataSet’,
@params = N’@model nvarchar(max)’,
@model = @modelt;
END

%% Example of predicting a dataset from a SQL query with a previously trained model in DB
EXEC aloja.dbo.MLPredict @inquery = ’SELECT exe_time, maps, iofilebuf FROM aloja.dbo.aloja6test’,

@id_hash = ’aa0279e9d32a2858ade992ab1de8f82e’;

Fig. 6. Version of the Prediction call for ALOJA-ML functions in a SQL-Server procedure. Like the training procedure in figure 5, the procedure primarily
retrieves the data to be processed from a SQL query, and passes it with the rest of parameters into the script. Here the result is directly a table (data frame).

it took 1h:9m:56s to process the 33147 rows, selecting just 3

features. Then, as a way to improve the performance, due to

the limitations of the single-thread R Server, we loaded snow-

fall, and invoked it from the ALOJA-ML “outlier dataset”

function, on a HDI-A8 instance (8 virtual core, all used, 14GB

memory). The data-set was processed in 11m:4s, barely 1/7

6

of the previous time, considering the overhead of sharing data

among R processes created by snowfall, demonstrating that

despite not being a multi-threaded set-up, using the traditional

resources available on R it is possible to scale R procedures.

B. Discussion

One of the concerns on the usage of such service is, despite

and because of the capability of multi-processing using built-

in or loaded libraries, the management of the pool of R

processes. R is not just a scripting language to be embedded

on a procedure, but it is a high-level language that allows from

creating system calls to parallelizing work among networked

working nodes. Given the complexity that a R user created

function can achieve, in those cases that such procedure is

heavily requested, the R server should be able to be detached

from the SQL-server and able in dedicated HPC deployments.

The same way snowfall can be deployed for multi-threading

(also for cluster-computing), clever hacks can be created by

loading RHadoop or SparkR inside a procedure, connecting

the script with a distributed processing system. As the SQL-

server bridges tables and query results as R data frames, such

data frames can be converted to Hadoop’s Resilient Distributed

Data-sets or Spark’s Distributed Data Frames, uploaded to a

HDFS, processed, then returned to the database. This could

bring to a new architecture of SQL-Server (or equivalent

solutions) to connect to distributed processing environments,

as slave HPC workers for the database. Also an improvement

could be that the same DB-server, instead of producing input

table/data frames already returned Distributed Data Frames,

being the data base distributed into working nodes (in a

partitioning way, not a replication way). All in all, the fact

that the embedded R code is directly passed to a nearly-

independent R engine allows to do whatever a data scientist

can do with a typical R session.

VI. SUMMARY AND CONCLUSIONS

The incorporation of R, the semi-functional programming

statistical language, as an embedded analytics service into

databases will suppose an improvement on the ease and

usability of analytics over any kind of data, from regular to

big amounts (Big Data). The capability of data scientists to

introduce their analytics functions as a procedure in databases,

avoiding complex data-flows from the DB to analytics engines,

allow users and experts a quick tool for treating data in-situ

and continuously.

This study discussed some different architectures for data

processing, involving fetching data from DBs, distributing data

and processing power, and embedding the data process into the

DB. All of this using the ALOJA-ML framework as reference,

a framework written in R dedicated to model, predict and

classify data from Hadoop executions, stored as the ALOJA

data-set. The shown examples and cases of use correspond

to the port of the current ALOJA architecture towards SQL-

Server 2016, integrating R Services.

After testing the analytics functions after the porting into

an SQL database, we observed that the major effort for this

porting are in the wrapping SQL structures for incorporating

the R calls into the DB, without modifying the original R code.

As performance results similar than R standalone distributions,

the advantages come from the input data retrieving and storing.

In future work we plan to test the system more in-depth, and

also compare different SQL+R solutions, as companies offer-

ing DB products have started putting efforts into integrating

R engines in their DB platforms. As this study focused more

in an initial hands-on with this new technology, future studies

will focus more on comparing performance, also against other

architectures for processing Big Data.

ACKNOWLEDGMENTS

This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No 639595).

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org (Aug 2016).
[2] Apache HBase. https://hbase.apache.org/ (Aug 2016).
[3] Apache Hive. https://hive.apache.org/ (Aug 2016).
[4] Apache Spark. https://spark.apache.org/ (Aug 2016).
[5] Databricks inc. https://databricks.com/ (Aug 2016).
[6] ParStream. Cisco corporation. http://www.cisco.com/c/en/us/products/

analytics-automation-software/parstream/index.html (Aug 2016).
[7] PureData Systems for Analytics. IBM corporation. https://www-01.ibm.

com/software/data/puredata/analytics/ (Aug 2016).
[8] R-Server. Microsoft corporation. https://www.microsoft.com/en-us/

cloud-platform/r-server (Aug 2016).
[9] RHadoop. Revolution Analytics. https://github.com/

RevolutionAnalytics/RHadoop/wiki (Aug 2016).
[10] SQL-Server 2016. Microsoft corporation. https://www.microsoft.com/

en-us/cloud-platform/sql-server (Aug 2016).
[11] UC Berkeley, AMPlab. https://amplab.cs.berkeley.edu/ (Aug 2016).
[12] Barcelona Supercomputing Center. ALOJA home page. http://aloja.bsc.

es/ (Aug 2016).
[13] J. L. Berral, N. Poggi, D. Carrera, A. Call, R. Reinauer, and D. Green.

ALOJA-ML: A framework for automating characterization and knowl-
edge discovery in hadoop deployments. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1701–1710,
2015.

[14] D. Borthakur. The Hadoop Distributed File System: Architecture and
Design.
http://hadoop.apache.org/docs/r0.18.0/hdfs design.pdf. The Apache
Software Foundation, 2007.

[15] Microsoft Corporation. Azure 4 Research. http://research.microsoft.
com/en-us/projects/azure/default.aspx (Jan 2016).

[16] N. Poggi, J. L. Berral, D. Carrera, A. Call, F. Gagliardi, R. Reinauer,
N. Vujic, D. Green, and J. A. Blakeley. From performance profiling to
predictive analytics while evaluating hadoop cost-efficiency in ALOJA.
In 2015 IEEE International Conference on Big Data, Big Data 2015,
Santa Clara, CA, USA, October 29 - November 1, 2015, pages 1220–
1229, 2015.

[17] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2014.

7

