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ABSTRACT
As energy-related costs have become a major economical fac-
tor for IT infrastructures and data-centers, companies and
the research community are being challenged to find better
and more efficient power-aware resource management strate-
gies. There is a growing interest in “Green” IT and there is
still a big gap in this area to be covered.

In order to obtain an energy-efficient data center, we pro-
pose a framework that provides an intelligent consolida-
tion methodology using different techniques such as turning
on/off machines, power-aware consolidation algorithms, and
machine learning techniques to deal with uncertain informa-
tion while maximizing performance. For the machine learn-
ing approach, we use models learned from previous system
behaviors in order to predict power consumption levels, CPU
loads, and SLA timings, and improve scheduling decisions.
Our framework is vertical, because it considers from watt
consumption to workload features, and cross-disciplinary, as
it uses a wide variety of techniques.

We evaluate these techniques with a framework that covers
the whole control cycle of a real scenario, using a simula-
tion with representative heterogeneous workloads, and we
measure the quality of the results according to a set of met-
rics focused toward our goals, besides traditional policies.
The results obtained indicate that our approach is close to
the optimal placement and behaves better when the level of
uncertainty increases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; I.2.6
[Artificial Intelligence]: Learning—Induction, Knowledge
acquisition

General Terms
Algorithms, Management, Measurement, Performance

Keywords
Machine learning, Power efficiency, Data center, Scheduling,
Simulation

1. INTRODUCTION
Energy-related costs have become a major economical fac-
tor for IT infrastructures and data-centers because of the
power’s price escalation. Companies are now focusing more
than ever on the need to improve energy efficiency. A new
challenge has appeared besides the energy cost, the reduc-
tion of the carbon footprint, due to many EU regulations
and campaigns demanding greener businesses. Commercial
electricity consumption is a major contributor to the rising
atmospheric CO2 levels and data centers are one of the fore-
most parts of the problem. Energy costs are rising, data
center equipment is stressing power and cooling infrastruc-
tures, and the main issue is not the current amount of data
center emissions but the fact that these emissions are in-
creasing faster than any other carbon emission. For this
reason nowadays there is a growing interest in “Green” data
centers and supercomputer centers [3].

In this area, the research community is being challenged to
redesign data centers, adding energy efficiency to a list of
critical operating parameters that already includes service
availability, reliability, and performance. A large variety of
power-saving methods has been presented in recent litera-
ture. Two of the most representative ones, namely work-
load consolidation and turning off spare servers, have been
shown to be an effective way to save power. Server consoli-
dation implies combining workloads from separate machines
and different applications into a smaller number of systems.
This approach solves some interesting challenges; less hard-
ware is required, less electrical consumption is needed for
server power and cooling and less physical space is required.
Intelligently turning off of spare servers that are not being
used is an obvious way to reduce both power and cooling
costs while maintaining good performance levels.

Nevertheless, most previous proposals focus only on par-
ticular scenarios, cover only single strategies, or deal with
synthetic data for some phases of the control cycle. For this
reason, we propose a framework based on classical workload
consolidation for reducing the power consumption of a data
center executing a real dynamic workload, which covers the
whole control cycle: from the acquisition of real power mea-
sures to the scheduling of the resources in the most power-
efficient way according to these measures. Our approach



applies some scheduling policies that reduce the number of
unused machines according to the workload needs in each
moment, and decide task placing and reallocation in order
to compact jobs in the lowest number of machines with-
out degrading their service level agreements (SLA). A new
challenge that needs to be addressed here is providing a well-
defined metric to evaluate the effectiveness of different adap-
tive solutions. For this, we define additional metrics in ad-
dition to power consumption to assess the quality of a given
approach.

Furthermore, some scheduling information is sometimes not
available or imprecise due to the user task specification or
different unexpected events inherent to the system. Some
decisions use information that can vary during the execution
time or is heuristically obtained. When the system and the
required application-level measures might be wrong or ab-
sent, we can use predictive methods to ’model’ this missing
information. In order to provide a better and more intel-
ligent consolidation, we propose a machine learning-based
method for obtaining models of application and machine
behaviors that let us predict service levels before applying
changes on the system, maintaining QoS while reducing en-
ergy consumption. This work is a proof-of-concept on ap-
plying new machine learning techniques in situations where
information can be missing or unclear, so for now we fo-
cus on CPU dependent workloads and CPU usage timing
constraints, expecting to extend the approach towards full
resource representative environments and workloads. All in
all, our proposal is a vertical one, involving from physical
wattage measurements to workload feature prediction and
simulation, and cross-disciplinary, as it touches upon very
different research areas and techniques. We believe this is
the path to follow to obtain intelligent and truly efficient
power management strategies.

The remainder of the paper is organized as follows. Some re-
lated work and discussion of typical approaches is presented
in Section 2. Section 3 describes the basics of our approach.
Section 3.1 formally states the problem of scheduling using
machine learning. Section 4 presents the evaluation environ-
ment including a detailed description of the simulation and
Section 5 evaluates the presented approach. Finally, some
conclusions and future work are discussed in Section 6.

2. RELATED WORK
Power management in cluster-based systems is an emerging
topic in the resource management area. There are several
works proposing energy management for servers that focus
on applying energy optimization techniques in multiproces-
sor environments, such as [20] and [8]. Another proposal
for load balancing for power and performance optimization
in this kind of environment can be found in [26]. Econom-
ical approaches are also used for managing shared server
resources in e.g. [9], where authors use a greedy resource al-
location distributing a web workload among different servers
assigned to each service. This technique demonstrates to re-
duce server energy usage by 29% or more for a typical Web
workload. [11] proposes a hybrid datacenter architecture
that mixes low power systems and high performance ones.

We propose adding smarter scheduling policies, using ma-
chine learning techniques, to dynamically turn off idle ma-

chines and reduce the overall consumption. Khargharia et
al. [19] introduce a theoretical methodology for autonomic
power and performance management in e-business data cen-
ters. They optimize the performance/watt at each level of
the hierarchy while maintaining scalability. The authors opt
for a mathematically-rigorous optimization approach that
minimizes wasted power while meeting performance con-
straints. Their experimental results show near 72% savings
in power as compared to static power management tech-
niques and 69.8% additional savings with the global and
local optimizations. Petrucci et al. [24] developed a mixed
integer programming (MIP) formulation to dynamically con-
figure the consolidation of multiple services/applications in
a virtualized server cluster. The approach is power efficiency
centered and takes into account the cost of turning on/off
the servers. However, it is too focused in Web workloads and
the decision algorithm is intended to run every 5 minutes, in
contrast with our approach, that can handle heterogeneous
workloads and adapt the system at every new job arrival,
making better use of energy. The use of heavy mathemat-
ical calculus in the scheduling can lead to a too slow deci-
sion process for an online scheduler like the one we look for.
Other approaches dealing with uncertainty are [34], where
statistic methods based on correlation are used to predict
usage and so consolidate works. They measure SLA but do
not take it directly into account when consolidating tasks.

The use of virtualization for consolidation is presented in
[25], which proposes a dynamic configuration approach for
power optimization in virtualized server clusters and out-
lines an algorithm to dynamically manage the virtualized
server cluster. Following the same idea, [21] aims to reduce
virtualized data center power consumption by supporting
VM migration and VM placement optimization while re-
ducing the human intervention, but no evaluation is pro-
vided. Other work [33] also proposes a virtualization aware
adaptive consolidation approach, measuring energy costs ex-
ecuting a given set of applications. They use correlation
techniques in order to predict usage, while we use machine
learning to predict application power and performance. Also
at this moment they do not apply powering off techniques,
just analyze the system.

The use of heterogeneous workloads leads to SLA’s where
some of the applications in the system can have stringent
conditions to be met. There have been several proposals into
resource capacity planning and dynamic provisioning issues
for QoS control (e.g. [6, 27, 29]). [10] states that new power
saving policies, such as DVFS, or turning off idle servers
can increase hardware problems as well as the problem to
meet SLAs in this reduced environment. Following this idea,
we show how scheduling policies can take into account such
problems.

Machine learning approaches have also been used to reduce
power consumption in clusters. Tesauro, Kephart et al. [31,
18] present a reinforcement learning approach to simultane-
ous online management of both performance and power con-
sumption. These approaches look at learning what policies
should be applied given a system status. Such policies save
more than 10% on server power while keeping performance
close to a desired target. Das et al. [14] present an approach
using multi-agents in order to turning-off servers under low-



load conditions, achieving 25% power savings without incur-
ring SLA penalties on server farms. All these approaches use
reinforcement learning in order to learn management policies
from given data, while we are using, at this moment, induc-
tion learning to model the data for a given policy. This lets
us plan, in our future work, the use of these policy learners
to add a new level of adaptability to our system.

Filani et al. [15] offer a solution that includes a platform
resident Policy Manager which monitors power and thermal
sensors and enforces platform power and thermal policies.
They explain and propose how the PM can be used as the
basis of a data center power management solution. Although
our scheduler does not take into account the thermal infor-
mation, the turning off of servers will reduce the cooling
needs.

3. ENERGY-AWARE MANAGEMENT
Our approach uses two different mechanisms in order to
reduce the power consumption of a data center while re-
specting the different SLAs. One of the mechanisms that
allows saving more power is turning off idle machines, which
saves more than 200W in testbed machines. A complemen-
tary mechanism is trying to execute all the tasks but with
the minimum amount of machines, known as consolidation.
Therefore, scheduling takes a main role in order to achieve
this power consumption reduction.

We want to turn off some idle machines in order to save
power and we turn on them again if they are needed when
a peak load occurs. For this purpose, our strategy is based
on consolidating a set of tasks, distributed among a set of
machines, into as few machines as possible without degrad-
ing excessively the execution of these jobs. Here, several
scheduling policies could be applied in order to assign new
jobs in the system to available machines and redistribute
jobs being executed in order to make some machines idle
and then turning them off [17]. Notice that turning on ma-
chines again is not a free and instantaneous process and this
overhead, which can take more than a minute, must be taken
into account.

We consider several traditional scheduling policies, includ-
ing; Random which assigns the tasks randomly (taking into
account if the node fits there); Round Robin which assigns
a task to each available node, which implies a maximization
of the amount of resources to a task but also a sparse us-
age of the resources; Backfilling which tries to fill as much
as possible the nodes, thus solving the former problem; Dy-
namic Backfilling which is able to move (i.e. migrate) tasks
between nodes in order to provide a higher consolidation
level. When tasks enter or exit the system, it checks if any
tasks should be moved to other nodes according to differ-
ent parameters such as the system occupation, current job
performance, or expected user SLA satisfaction.

While Dynamic Backfilling performs well when having pre-
cise information (as shown in the evaluation), other policies
are necessary when information is incomplete or imprecise.
For this reason, a machine learning policy is introduced in
order to predict features that will only be known in the fu-
ture. This lets us anticipate the SLA degree and the power
consumption before placing or moving jobs, and therefore

choose a job configuration that is expected to be good.

3.1 Machine Learning approach
The closely related Machine Learning and Data Mining ar-
eas are concerned with obtaining knowledge from data. This
typically involves creating models or discovering patterns in
examples from the past of a system behavior, with as little
expert intervention as possible. In this study, we use ma-
chine learning techniques in order to predict, from our set
of machines and set of jobs, the resulting client satisfaction
level of each job and power consumption before placing tasks
in machines or moving tasks across machines. These predic-
tions are then used by a move selection algorithm to choose
destination machines with good resulting client satisfaction
and opportunities for consolidation.

For this prediction process, we need to choose suitable pre-
dictor algorithms, computationally light but able to obtain
good results once trained with data from various workloads.
Also, we need to obtain a good training set (a set of data
containing labeled instances from representative executions)
and another test (or validation) set. If, after training, the
predictors’ guesses are close to the correct values on the test
set, we expect that they will also be correct on future real
workloads. Figure 1 shows the basic schema of a supervised
machine learning process.
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Figure 1: Supervised Machine Learning Schema

The machine learning aided policy implements a Dynamic
Backfilling scheduler replacing the static decision maker, us-
ing the information provided directly by the user, and using
as decision maker the results of the performance and power
consumption estimators. This is, instead of fitting jobs in
host machines directly from the user specifications, we es-
timate the impact the job will cause in the potential host
machine, in performance parameters and power consump-
tion.

In the line of Dynamic Backfilling, for each reschedule we
attempt to empty low-used host machines fulfilling nearly
fully-booked ones. Then, for each movement we estimate
whether the job will interfere in the resource requirements of
all other jobs in the machine, and the estimated new power
consumption of this machine will compensate the possible
performance degradation. This permits to obtain a more
adaptive and robust system, where user or application spec-
ifications can be imprecise or change over time.

Currently we are assuming a negligible operation cost, but
for our future work we are working out on taking factors like



moving machines cost into account. Also Dynamic Backfill-
ing is a costly algorithm specially when using data collection
processes, so we are planning the use of some AI planning
and reinforcement learning techniques [30, 32], in order to
make decisions in a more accurate and not so costly way.

3.2 Relevant factors and basic assumptions
When a new job arrives, the system will try to allocate it
to some host, and then perform a scheduling round in order
to find a more efficient schedule. The candidate moves are
of the form “move job j from its current host to host h”,
and the chosen one will be the one with maximum expected
benefit. This benefit is the combination of two factors: the
future performance of the jobs and power consumption in
the resulting allocation, that we call R and C. Given a host,
Rh and Ch cannot be known beforehand in general, so we
will predict these values from our learned models obtaining
the estimated R̂h and Ĉh.

The factor Rh indicates the health status of the jobs running
on a machine h. This factor can be represented as a number
between 0 and 100; a value close to 0 will indicate unac-
ceptable performance, and a value close to 100 will indicate
a good performance of the jobs in the machine. For this
case of study, as a proof of concept we will assume that Rh

depends only, for each job allocated to h, on the particular
deadline constraint, indicating the SLA fulfillment.

Usually an SLA is an agreement on application resource con-
sumption or performance guarantees (bandwidth, disk and
CPU quotas, response time or throughput, time deadlines).
In this paper we use a time deadline metric as SLA guar-
antee. The SLA fulfillment level follows a grid client satis-
faction ratio, where it is fulfilled when the task completion
time takes less than the deadline given by the user.

In immediate future work we are including other relevant
metrics into the SLA objectives, such as throughput con-
straints for service applications and time of response for in-
teractive applications.

We can define a finished job j by a tuple

j =< UserTj , SLAFactorj , StartTj , EndTj >

where UserTj is the user estimation of the time to complete
the job, SLAFactorj is the factor over UserTj that the user
is willing to accept, and StartTj and EndTj are the times
in which the job was started and finished.

The performance factor Rh can be calculated in the way of

Rj = f(UserTj , SLAFactorj , StartTj , EndTj)

where function f , which is negotiated with the user, indi-
cates the penalty for not satisfying the user’s requirement,
and we use it to define the fulfillment of job j, Rj (indepen-
dently of the machines in which it has been executed). A
very strict function f (fhard) would indicate maximum loss
when the SLA is not totally satisfied, while softer functions
(fsoft) could go from 100 to 0 smoothly.

fhard =


100 if EndTj − StartTj ≤ UserTj · SLAFj

0 otherwise

fsoft = max(100,
UserTj

EndTj − StartTj
· SLAFj · 100)

At this stage of the work we use the softer version of f ,
expecting to use more elaborated functions when we dispose
of more complex workloads with complex SLA requirements.
For this work, the value of Rh given a machine h should
be the aggregation of the values Rj for all allocated jobs
on h. Supposing an initial hypothesis of fairness between
the jobs on a machine, for this version of our work we take
as aggregation function g the arithmetic mean of the Rj ’s

g(h) =
PJobsh

j Rj/(Num Jobsh)

The consumption factor Ch indicates the power consump-
tion of machine h. It can be measured empirically for the
training data sets, and possibly during the execution. Our
experiments and common knowledge indicates that it de-
pends mostly (but is not linearly proportional to) the per-
centage of CPU usage at h.

The global function that the system should optimize is a
combination of the aggregated levels of SLA fulfillment and
the total power consumption, that is of R = g(R1, . . . , RH)

and C =
PH

h=1 Ch if we have H host machines. For the
moment, we decided to choose moves that maximize R under
the condition that they do not increase C; this maintains
SLA accomplishment as a priority over consumption, which
is the usual practice up to date.

3.3 Data sets and prediction algorithms
The values of Rh and Ch as described above are usually
not known before performing the job allocation and fin-
ishing the running jobs in the machine. But we can run
representative executions in order to obtain examples of
〈jobs,machine,Rh, Ch〉 configurations, and learn a model

capable of predicting, from 〈jobs,machine〉 ⇒ 〈R̂h, Ĉh〉

To predict the power consumption Ĉh, we found it useful to
predict first the percentage of CPU usage at h. We used the
Linear Regression algorithm [35], where the most relevant
attributes resulted to be the CPU usage for each individual
job in h and, with smaller weight, the number of jobs in the
candidate host. This attribute choice was to be expected.
Predicting power consumption is more complex that a sim-
ple linear regression, because it has a nonlinear relation with
CPU usage, so we used the more sophisticated M5P machine
learning algorithm [35]. M5P builds a decision tree splits on
attributes at inner nodes and applies different linear regres-
sion at the leaves. It therefore computes a piecewise linear
function of the attributes, which is enough to approximate
the nonlinear dependence of power consumption on (mostly)
CPU usage and number of jobs.

The real problem is predicting the deadline fulfillment of a
given job, Rj because the most important value EndTj −
StartTj will not be known until the job ends, and also
the user estimate UserTj may be inaccurate. Using the

learned model we predict R̂j using as known information:
the amount UsageCPUj of CPU used by the jobs on h
(included the new job), time spent so far Now − StartTj

and the characteristics of the machine where it is executing
AvailableCPUh. For this prediction we have used another
linear regression function, where the most relevant values are
the timing values for j and other jobs in the same machine.
In this preliminary work, assuming that all the machines



have identical capacity, some attributes about machine char-
acteristics need not to be included into the learned model,
but as see during the experiments of the Linear Regression,
a coefficient exists directly related to the capacity of the
machine.

The algorithm pseudocode is shown in Algorithm 1. Basi-
cally it performs a dynamic backfilling strategy, using the
learned model to decide whether the new allocation of the
job will bring an energetic improvement given an estimated
performance cost. At each scheduling round, the underused
hosts are selected to be emptied, and their jobs are virtu-
ally allocated in nearly-full hosts. Using the model, we can
estimate if this is a suitable allocation. If it is, and we con-
sider the host can be emptied, we proceed to perform the
jobs reallocation. Note that it is a greedy algorithm that is
not guaranteed to find the theoretically best possible list of
movements.

Algorithm 1 Algorithm for move selection
Poll hosts for information about their jobs and status;
OH := select "Emptiable Machines" [jobs < 4];
For each Machine (oh) in OH do:

For each Job (j) in oh do:
CH := select "Fillable Machines" [enough CPU and mem];
For each Machine (ch) in CH do:

-- predict effect of moving j from oh to ch;
predict R(oh) and R(ch) after movement;
predict C(oh) and C(ch) after movement;
compute global R and C after movement;

End For
Get ch leading to highest R among those that decrease C;
add movement (j,oh,ch) to List_of_movements;

End For
If (all jobs in oh can be reallocated) then:

proceed with the List_of_movements;
End If

End For

4. SIMULATION AND METRICS
Simulation consists of the evaluation of a set of nodes which
are stressed by a given workload. The system performance
is evaluated according to a set of different metrics that take
into account consolidation and power consumption.

The simulation is able to compare different scheduling poli-
cies. They are implemented in a modular way and can be
plugged on top of other architectures, such as EMOTIVE
[16] or XtreemOS [2, 12] (inside its component Application
Execution Management, AEM [13]), where a set of sched-
ulers can be introduced and selected by the administrator.
XtreemOS follows a scheme of local scheduling rather than
a global one, but its direct interaction with the kernel and
its dynamic resource discovery via DHT can provide a way
to simplify the switch on-off techniques.

4.1 Simulation and power models
In this section we present a framework for evaluating the
power efficiency of a data server which executes an hetero-
geneous workload. This framework tackles the whole prob-
lem from the power consumption measurement of a single
machine to the execution of different applications on a data
center which allows evaluating different approaches such as
dynamic turn on/off or consolidation. It is based on a sim-
ulator in order to evaluate the performance of a whole data
center focusing on power consumption. It allows obtaining

different metrics of the modeled cluster while applying dif-
ferent workloads in order to optimize different policies.

Figure 2 shows the development cycle of the simulator used
in our framework. Firstly, different applications with dif-
ferent typologies and profiles are executed (on a real, not
simulated, machine) and their resource usage and power
consumption monitored. Power usage is recorded using an
external device which monitors the whole machine energy
consumption. From these recordings, a model of the ma-
chine is built, which is then used to simulate a data center
with many (identical) machines. Validations are applied to
refine the model and the simulator. Finally, the simulator is
executed to provide the experimental data described here.
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Figure 2: Simulator workflow

This simulator is able to add and remove nodes dynamically
including the boot time and load times. It allows using dif-
ferent scheduling techniques which can take advantage of
different capabilities such as migration of running tasks be-
tween nodes.

Finally, the simulator is able to read a workload and ap-
ply the different scheduling policies to output the results of
executing the workload, including power consumption and
other resource usage statistics, as shown in Figure 3.

Simulator

Workload Output

...Sched0 SchedN

Figure 3: Simulator

4.1.1 Energy consumption measurement
We measured the real power consumption using different
workloads in a 4-CPU computer whose kernel includes some
energy efficiency policies. The power consumption of the
machine was gathered using digital methods via an amme-
ter. In the past, analogical methods via oscilloscope where
used, as seen in [22], but similar results are obtained with the
ammeter method (however, instantaneous wattage is lost;
we can only measure stable workloads). The resolution of
the measurements is below 1 Watt. Figure 4 shows the sys-
tem behavior; we can see that wattage increases with the
workload (in a non constant slope), but that it is noticeable
even in an idle machine, which is the main reason why we
can gain by consolidation. This graph was included in the
simulator, as part of the model. It is important that idle



wattage level should be decreased in the industry as it is
one of the most used states and it is not energy efficient, as
seen in [7].
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Figure 4: Power behavior of the target PC

4.1.2 Testbed simulator
Our simulation technology is based on the OMNeT++ [4]
platform. The simulation uses similar techniques as seen
in [23], but centered on power usage (measured in a real ma-
chine as seen in the environment section) and the scheduling
of the different CPUs in the machines.

The simulation takes a list of tasks and tries to execute them
in a PC containing a set of CPUs, with a specified quantum.
The machines can be shutdown and booted on-demand too.
To make the booting more realistic we specify a booting
time of 60 seconds and a power usage as measured in the
real machine.

As in [23], the simulator does not try to simulate exact ex-
ecution times working step-by-step, as this would be very
time consuming. It is much simpler but enough for our pur-
poses if we can predict the system’s general behavior, in
the long run, for the different scheduling techniques in large
clusters, with respect to Service Level Agreement and power
usage. See [23] for details.

4.1.3 Model validation
We have validated the model using special schedulers whose
outcome we can predict separately and testing that the sim-
ulation obtains the expected relative values (such as SLA
= 1.0 or similar). Moreover we tested that simulating one
machine produces similar power usage values as in the real
case. Future work may include fine-tuning and a more de-
tailed validation, as some smaller overheads and other issues
that can show in the real world should be modeled and in-
troduced in the simulator.

4.2 Metrics
One of the key proposals of this paper is the ability to
compare different techniques for efficient power usage. Cur-
rently, there is no standard approach for measuring the power
efficiency or the consolidation of a data center. For example,
[28] proposes a benchmark for measuring power efficiency on
a set of different scenarios such as mobile devices or servers.
However, it does not address consolidation.

In this paper, we introduce some metrics to compare adap-
tive solutions. To this end, the energy consumption must
be evaluated precisely. This part is mandatory to be able to
compare different approaches. Nevertheless, it is not enough
since a given policy can decrease the efficiency energy but
it can make some tasks violate their SLAs. In addition,
consolidation factors are also important for measuring the
scheduling policy quality as understanding what a scheduler
is doing is not easy just evaluating energy or SLA fulfillment.
For this purpose, we add some other metrics that would help
to comprehend and measure different relevant aspects.

Working nodes The number of nodes that are executing
some task. Hence, in order to allow shutting down
more nodes, less working nodes are better.

Running nodes The number of nodes that are turned on.
Having a lower number of these machines is one of the
key issues for saving energy in order to reduce the idle
machine consumption.

CPU usage The amount of CPU time that has been used.

Power consumption Total energy consumed by the nodes.

SLA fulfillment level The client satisfaction based on the
task SLAs. We evaluate a service by its availability
ratio, which is 100 if it is always available, and 0 if it
never is. On the other hand, we will use the typical
grid client satisfaction ratio, which is 100 if execution
time is less than expected time and 0 if completing the
task takes longer than twice the expected time. This
is defined by this equation:

S =


100 if ExecT < ExpectedT

100 ·max{1− ExecT−ExpectedT
ExpectedT

, 0} if ExecT ≥ ExpectedT

5. EVALUATION
In this section, we present the experimentation regarding
our strategy and the different used techniques, and also the
simulation and power consumption models used for evaluat-
ing them.

5.1 Experimental environment
The experiments will consist of the simulation of a whole
data center with 400 nodes that will execute different work-
loads and will evaluate its behavior according to different
metrics including power consumption.

The presented approached intends to take benefit of the vari-
ation and the heterogeneity in current data centers. For
this reason, the evaluation includes two different workloads:
Grid and service oriented. The former is a Grid workload
obtained from Grid5000 [5] on the week that starts on Mon-
day first of October of 2007. The training of the ML model
has been performed using the workload corresponding to the
week of third of September. For evaluating the SLA satis-
faction, SLAs have been added to the Grid jobs, specifying
tolerance factors in execution times in the range 1.1. . . 2.0.

The latter workload results from the aggregation of different
services based on the load of Ask.com [1]. These services
correspond to three different profiles. One that represents
a single day execution from 0:00 to 23:59 with a low usage



during the night and a classical increase at the start of day.
The second one follows the same behavior but it has a bigger
load in the afternoon. The third uses a whole week in order
to represent the weekend user decrease.

Finally, the evaluation also includes a mix of the already
presented workloads in order to simulate a heterogeneous
data center and test the functionality of the approaches with
a realistic approach for current data centers.

5.2 Power vs. SLA fulfillment trade-off
In our approach, one of the key decisions is determining
when a node should be turned off in order to save power
consumption or when to turn on it again in order to be used
to fulfill the tasks SLAs. This decision is driven by means
of two thresholds: the minimum Working nodes thresh-
old λmin, which determines when the provider can start to
turn off nodes, and the maximum Working nodes threshold
λmax, which determines when the provider must turn on
new nodes. Finally, in order to set a minimum working set,
the minimum amount of machines minexec is also specified.

The effect of these two thresholds has been tested by execut-
ing the Grid workload on top of the simulated data center
following the Dynamic Backfilling policy, which is the one
which makes a more aggressive consolidation without taking
into account the task SLA. This allows evaluating the influ-
ence of the turning on/off thresholds by showing the SLA
and the power consumption respectively.
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Figure 5: SLA satisfaction using different turn
on/off thresholds

Figure 6 shows that waiting the nodes to reach a high utiliza-
tion before adding new nodes (high λmax) makes the power
consumption smaller. In the same manner, the earlier the
system shutdowns a machine (high λmin), the smaller the
power consumption is. It demonstrates how turning on and
off machines in a dynamic way can be used to dramatically
increase the energy efficiency of a consolidated data center.

On the other hand, SLA fulfillment decreases, as shown in
Figure 5, when the turn on/off mechanism is more aggres-
sive and it shuts down more machines (in order to increase
energy efficiency). Therefore, this is a trade-off between the
fulfillment of the SLAs and the reduction of the power con-
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Figure 6: Power consumption using different turn
on/off thresholds

sumption, whose resolution will eventually depend on the
service provider interests.

Fortunately, average threshold values give a balanced trade-
off between energy and SLA. According to this, in the eval-
uation we will use λmin = 30% and λmax = 60% in order
to ensure almost complete fulfillment of the SLAs while get-
ting substantial power consumption. A next step would be
to dynamically adjust these thresholds, and is part of our
future work.

5.3 Validation of ML models
In this section, we evaluate the accuracy of the machine
learning models derived during the training process, to as-
sess their reliability to predict future situations. Further-
more, we evaluate the performance of our overall method
for scheduling and consolidating.

The role of the machine learning methods is to provide pre-
dictions of values that are unknown at the time in which they
are needed. In our setting, they provide some of the inputs
to the Backfilling and Dynamic Backfilling algorithms that
they need to perform their scheduling, namely, anticipated
power variation and SLA fulfillment resulting from a possi-
ble move. Luckily, at the validation stage, the information
about actual power variation and SLA fulfillments can be
read from the available datasets. We can thus evaluate pre-
dictor accuracy on a test/validation subset, disjoint from the
training set.

The linear regression model to predict SLA fulfillment ratio
fits with the real measurements with average accuracy close
to 0.985. This very high value is explained in part by our
current choice of priorities. Since we prioritize SLA fulfill-
ment over consumption, the algorithm’s choices are conser-
vative or cautious with respect to SLA’s, which are therefore
almost always fully satisfied, and therefore easy to predict.
In fact, we did not find situations where the predicted SLA
value is 1 but the actual SLA is lower: the 0.015 fraction of
prediction errors are on the side of SLA’s that are predicted
to fail but finally succeed. This will generally implied that
our algorithms do well on the SLA side at the expense of



somewhat higher than necessary power consumption.

The model for predicting CPU usage, basically using the
CPU usage of all jobs allocated to it, is accurate up to 0.997,
almost perfectly. CPU usage prediction is in turn used to
predict the power consumption of a machine after adding a
job, and we obtained a high accuracy of 0.98 between the
model and the workload data, so the model is able to predict
consumption for low loads, average loads, and high loads.

Having so validated the models, we can use them to provide
inputs to the ML-based scheduler. Next subsection shows
the results of this and other schedulers considered.

5.4 Scheduling policies
This experiment evaluates the behavior and performance of
the different scheduling policies using three different work-
loads, namely a Grid workload, a Service workload, and a
Heterogeneous workload. It uses the turn on/off thresholds
λmin = 30% and λmax = 60% derived in Section 5.2.

We have evaluated five scheduling algorithms: Random and
Round-Robin do not use any user-provided information about
the jobs and do not consolidate. For Backfilling and Dynam-
icBackfilling, the user provides for each job a figure indicat-
ing which % of a CPU capacity should suffice to satisfy the
task SLA’s. The algorithms trust this figure as totally re-
liable, and therefore will make decisions that may fit very
tightly the SLA’s and therefore save power. Our algorithm,
Machine Learning, has the drawback with respect to these
algorithms that it does not use any user-provided informa-
tion. Therefore, a priori we should expect it to perform
worse in general, as it has to pay a price for this lack of
information, but the closer in performance it is to these two
algorithms with privileged information, the more successful
we can consider our approach. Somewhat surprisingly, we
will see that it does sometimes better than the algorithms
having additional information. The results are presented in
Table 1, according to the metrics proposed in Section 4.2.
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Figure 7: Power consumption of different schedulers
with a Grid workload

The results obtained using the Grid workload show that
non-consolidating policies such as Random and Round-Robin
give a poor energy efficiency while violating some SLAs:

these policies give the worst results on both criteria. Back-
filling and Dynamic Backfilling fulfill all SLA’s with sub-
stantially lower cost. Machine Learning performs almost
perfectly w.r.t. SLA’s (as we have seen that predictions
for SLA fulfillment are very accurate), but with respect to
power is closer to Random than to the backfilling algorithms.
The reason is that the user-provided figures for the tasks are
very close to the real ones (and the load quite steady), so the
backfilling algorithms will take many decisions that will not
violate any SLA but that look too risky to Machine Learn-
ing, that pays a high price in consumption for its caution.

Notice that this workload makes a very variable use of the
power consumption over time as it is graphically shown in
Figure 7. This is due to the fact it makes the system creating
and destroying many VMs, which implies a high variability
in the number of running nodes and power consumption dur-
ing time. The figure shows the power consumption pattern
of the different schedulers and enforces the table results.
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Figure 8: CPU usage and SLA fulfillment with het-
erogeneous workload; Most significant policies: Dy-
namic Backfilling, Machine Learning and Random

On the Service workload, the Machine Learning scheduler is
the clear winner with respect to energy consumption. Note
first that on this workload all the schedulers executed all
the tasks, so all SLA’s are fulfilled. The workload has a
very variable CPU usage. This means that the user-provided
estimation about the CPU to be used for the given jobs will
be a large overestimation for large periods (while it was very
tight on the Grid workload), and power will be unnecessarily
wasted. Here is where the Machine Learning scheduler takes
advantage because of the capability of computing somewhat
conservative but adaptive estimates of the degree of SLA
fulfillment, and adapt its power consumption accordingly.
Thus, it is able to work better when the features of the
input load are not known or the user-provided estimates are
misleading, which is very often the case.

Finally, the results obtained using the Heterogeneous work-



Working nodes (avg) Running nodes (avg) CPU usage (hours) Power (kW) SLA (%)

Grid workload

Round Robin 16.11 41.37 5954.91 1696.66 85.99
Random 16.51 40.76 6017.85 1671.16 88.38
Backfilling 10.18 27.10 6022.34 1141.65 100.00
Dynamic Backfilling 9.91 26.46 6104.33 1118.86 100.00
Machine Learning DB 15.04 37.92 6022.27 1574.78 99.69

Service workload

Round Robin 290.99 400.00 78419.97 19761.54 100.00
Random 218.46 400.00 75336.88 19784.38 100.00
Backfilling 108.79 352.88 59792.09 16257.26 100.00
Dynamic Backfilling 108.79 352.88 59748.10 16229.22 100.00
Machine Learning DB 99.61 270.50 61379.38 13673.71 100.00

Heterogeneous workload

Round Robin 260.66 400.00 84432.96 19713.72 94.20
Random 224.08 400.00 82137.27 19763.63 88.53
Backfilling 110.85 330.19 65894.46 16304.38 99.50
Dynamic Backfilling 111.03 329.07 66020.58 16214.49 99.59
Machine Learning DB 124.20 307.89 68554.01 15110.33 98.63

Table 1: Scheduling results.

load are, as expected, a mix of the two previous workloads.
In this case, the overall SLA fulfillment by our algorithm
is worse by about 1%, but its overall power consumption
is better by about 10%. Figure 8 shows the evolution over
time, and one can see that Machine Learning does worse
w.r.t. SLA when the CPU utilization is higher (i.e., when
the other algorithms can exploit the user-provided informa-
tion they have), but much better than Random and Round
Robin, which behaves very similar to Random.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a framework that provides
a vertical and intelligent consolidation methodology to deal
with uncertain information keeping in mind performance
and power consumption at the same time. This framework
covers the whole control cycle of a real scenario with a holis-
tic approach that requires a collaboration among researchers
from different disciplines. The results obtained in this paper
indicate that significant improvements can be achieved us-
ing machine learning models in order to predict application
SLA timings and decide the movements and operations to
be done within scheduling functions.

Our experiments, performed using real workloads, exemplify
that these techniques can offer substantial improvements in
energy and performance efficiency in these scenarios. The
experiments using the Grid workload demonstrate how non-
consolidation aware policies give a poor energy efficiency.
Backfilling gets a good performance and its dynamic exten-
sion demonstrates power efficiency in order to reduce power
consumption, but only if reliable a priori information on the
tasks is available, and if the task features are steady over
time. The machine learning method is close enough to these
models that use external information w.r.t. SLA fulfillment
(performance), and much better with respect to power con-
sumption when the information provided by the user is not
uniformly accurate. On mixed, heterogeneous workloads, it
obtains noticeable reductions in power consumption at the

expense of only a slight decrease in performance.

On this work, as a proof of concept, we used a greedy algo-
rithm for scheduling (Dynamic backfilling) and we departed
from basic attributes (CPU Usage, Timing SLAs), as a first
approximation of a decision making methodology. We are
now focusing our work toward Reinforcement Learning al-
gorithms, in order to optimize the search space of schedul-
ing solutions, and be able to make decisions taking into ac-
count immediate results of job scheduling and also the con-
sequences of choosing an specific action or another on future
system configurations. Therefore, as being proved the viabil-
ity of adding ML techniques to improve power management,
we are now including the concept of resource aggregation of
not only CPU but also memory and IO, and expanding the
concept of SLA.

The rest of our future work will focus on the extension and
addition of new modules to the simulator in order to get
more information and simulate detailed scenarios such as
virtual environments, and migration operational costs. Fur-
thermore, new enhancements to the scheduling policies such
as dynamic thresholds when turning on/off machine will be
added.
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configuration model for power-efficient virtualized
server clusters. In 11th Brazillian Workshop on
Real-Time and Embedded Systems (WTR), 2009.

[25] V. Petrucci, O. Loques, B. Niteroi, and D. Mossé.
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