
CHAPTER 8

TOWARD ENERGY-AWARE
SCHEDULING USING MACHINE
LEARNING

JOSEP LL. BERRAL, IÑIGO GOIRI, RAMON NOU, FERRAN JULIÀ,
JOSEP O. FITÓ, JORDI GUITART, RICARD GAVALDÁ, and JORDI TORRES

8.1 INTRODUCTION

The cloud and the Web 2.0 have contributed to democratize the Internet, allowing
everybody to share information, services, and IT resources around the network.
With the arrival of digital social networks and the introduction of new IT infra-
structures in the business world, the Internet population has grown enough to
make the need for computing resources an important matter to be handled. While
few years ago enterprises had all their IT infrastructures in privately owned data
centers, nowadays the big IT corporations have started a data-center race, offer-
ing computing and storage resources at low prices, looking for outside companies
to trust them for their data or IT needs.

A single web application in the cloud can be easily used by people from
around the world, so data and computation need to be available from everywhere,
having in mind things such as the quality of service (QoS) and the service-level
agreements (SLAs) between users and servers. Services offered by Google and
YouTube, for example, must be replicated around the globe or just be efficient
enough to move data, jobs, or applications among the data-center farms spread
along the planet. Given the amount of applications running now on the cloud
and the amount that will come, coordinating all its applications, resources, and
services becomes by itself a hard optimization problem.

Energy-Efficient Distributed Computing Systems, First Edition.
Edited by Albert Y. Zomaya and Young Choon Lee.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

215

216 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

8.1.1 Energetic Impact of the Cloud

Having powerful enough data-centers to server applications or computation time
is not the only thing to keep in mind when building the Cloud. As energy-
related costs have become a major cost factor for IT infrastructures and data
centers, power consumption has become an important element to keep in mind
when designing and managing them. This energetic cost is reflected in the electric
consumption, which is sometimes nonlinear with the capacity of that data centers.
It also has direct environmental impact and is conditioned by social pressure
for efficiency. Companies dedicated to cloud-based services, and the research
community are being challenged to find better and more efficient power-aware
resource management strategies.

Until now technological improvement sufficed to cover the increasing IT
demand, bringing faster processors, bigger storage devices, and faster connec-
tions between resources. The energetic factor was not relevant enough to be
focused on. Now the demand is growing faster than technological improvement,
so each time we need bigger data centers to be cooled down in colder places,
having enough power supply [1].

Reaching an optimal performance of cloud services and resource management
requires an intelligent management , conscious of the importance of each resource
used, each service given, the way power is consumed, and the relation between
power consumed and work done. This intelligent management complements the
technological improvement, allowing better resource use, borrowing and lending
resources when it is convenient to do so, and improving the QoS without scaling
up the data centers unnecessarily.

8.1.2 An Intelligent Way to Manage Data Centers

This intelligent management would be easy if the manager knew in detail the
structure and elements in the cloud, if system administrators could keep constantly
watching the system, and if experts could advise what to do in each situation.
Unfortunately this is often not possible. Unfortunately, this is not often possible.
The cloud, as its name suggests, becomes an abstract cloud of resources. Each
domain of resources has its own resource broker and interface for dealing with
resource borrowers and lenders, so a part of the cloud cannot manage or get all
the information from other parts of it.

Also, systems running on the cloud are hard to model, as well as predict. There
are no experts in some applications of the cloud, and some predictive variables
are hidden to the naked eye, so it is very difficult to predict the behavior of the
whole (or just a part of) system when lots of variables are involved. Furthermore,
keeping a human operator watching over all events and resources of the system;
reacting to each change when changes happen so fast; and executing the best
solution each time is not possible. Intelligent management must be automated,
must “understand” what is happening in the system, and must “learn” about
actions to be taken.

INTRODUCTION 217

8.1.3 Current Autonomic Computing Techniques

Current data centers and large-scale distributed computing systems are increas-
ingly implementing the techniques of autonomic computing. Automation on
large-scale systems has become a hot spot on system improvements, letting the
systems manage themselves (self-healing, self-protection, self-optimization, and
self-configuring) from expert systems, statistic models, and ad hoc rules.

The intermediary software (also known as middleware) in charge of perform-
ing these autonomic computing techniques requires models that capture the most
important factors of the systems while allowing abstract reasoning. The models
must allow formalizing behaviors and interactions that help the use of optimiza-
tion techniques (from simple heuristics to complex techniques) based on, that
is, what-if predicting techniques or expectation formulas for action results. It is
important to remark that optimizations at different system levels interfere between
them. This makes the behavior of the current systems unmanageable at execu-
tion time, requiring novel optimization techniques that implement self-properties
at runtime. These autonomic techniques must be developed to manage workload
fluctuations and to determine optimal trade-offs between performance and energy
costs.

All these solutions can also be improved if the system learns from itself,
becoming itself an expert, modeling from statistics, and writing and improving
its rules or management policies. ML (and the closely related field, data mining)
brings a set of methods and ideas to, given a set of observations from the system,
infer and induce the behavior of the system. Also, these methods are often easy
to update in front of changes, or just or general enough to accept changes. This
ability to learn for improving the performance of large-scale systems opens a
new wide research area combining the self-capabilities of autonomic computing
and the capabilities of discovering knowledge from systems.

8.1.4 Power-Aware Autonomic Computing

Middleware requires new advanced management mechanisms to provide the
necessary control actuators to successfully manage the resources in order to
add energy efficiency as an operating parameter. Nowadays, the most common
techniques used in the research literature of the area can be summarized as virtual-
ization, turning on/off servers, DVFS (Dynamic Voltage and Frequency Scaling),
and hybrid nodes/hybrid data centers.

• Virtualization is key to reducing power consumption. With virtualization,
multiple virtual servers can be hosted on a smaller number of more pow-
erful physical servers, using less electricity. Virtualization mechanisms are
currently used for consolidation.

• Turning on/off servers reduces the overall consumption through consolida-
tion. As reduction of needed resources is the goal of consolidation, shutting
down of these resources when possible is where actual energy saving is
achieved.

218 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

• DVFS is the reduction of voltage and frequency, providing substantial saving
in power at the cost of slower program execution. Current microprocessors
allow power management by DVFS.

• In hybrid data centers, it is possible to choose among a variety of resources,
depending on the system load and requirements taking into account energy
consumption. Even more, we would like to have the system (not a human
supervisor) choose and learn to choose among different resources with the
same final functionality but with different characteristics.

Usually, all these techniques can also be combined, improving the level of
consolidation and effectiveness. By deciding to turn the physical machines on
and off when virtualized machines are consolidated or specializing the physical
machines where virtual machines (VMs) are going to be consolidated, power
saving can be improved.

8.1.5 State of the Art and Case Study

In this chapter, a brief survey of the state of the art of “intelligent management”
and power-aware techniques is shown in Sections 8.2 and 8.3, focusing on the
works that are introducing machine learning and other artificial intelligence tech-
niques. Also, a case study summarizing our experiences, applying some of these
techniques is introduced in Section 8.4, explaining some practical applications
of each technique and showing results and conclusions on the application of the
learning mechanisms on a self-management system.

8.2 INTELLIGENT SELF-MANAGEMENT

Adaptive and updatable mechanisms have been developed in order to optimize
the management of the cloud and improve the resource usage and the QoS. But
the cloud is becoming more complex and application requirements are increasing
and knowledge-based and data mining techniques are starting to be applied.
Once information about the execution, resources, and requirements is available,
artificial intelligence (AI) and machine learning (ML) can be applied to improve
prediction and information retrieval, letting the system make some decisions with
more autonomy and with more accuracy.

In intelligent management , there are different techniques that are beginning to
be researched and applied. The first ones are the standard AI-based techniques.
These techniques use prediction and heuristic algorithms in order to anticipate
system performance and act in consequence. Fuzzy logic, genetic algorithms,
and other AI methods are used in order to improve QoS, resource allocation, and
execution of applications. The second ones are the ML-based applications. These
techniques use the recorded information from past behaviors to create a model
that best fits the usual behavior and lets the system detect anomalies and make
decisions over the system.

INTELLIGENT SELF-MANAGEMENT 219

8.2.1 Classical AI Approaches

AI methods have been historically defined as a machine thinking like human
methods, but nowadays, AI is more like finding a suitable/intelligent solution
with limited time/space. The classical AI methods are about searching a good
solution to a problem on a representation space, or representing knowledge using
ontologies and expert systems, and all of these as optimal as possible. Exhaustive
searches on a representation space are often NP-hard or exponential problems,
and the same happens with many ontology systems or huge expert systems,
so searching methods using heuristics, genetic algorithms, and fuzzy knowledge
techniques are used to perform these searches in a viable way, not finding always
the best solution but having a suboptimal solution in the available space and time.
The solution is intelligent in the sense that it does not examine the whole space
of solutions.

8.2.1.1 Heuristic algorithms. With the capability of using knowledge and
heuristic algorithms, it is possible to predict some situations with good accu-
racy. This prediction can be applied to detect unwanted situations or behaviors
or to view the near future situations such as imminent changes in the work-
load, changes in the resource demand, or limit situations of resource offers. In
approaches such as those presented by Vraalsen [2] and Fahringer [3], some pre-
diction models for parallel programs and grid-based applications are presented,
where a method based on heuristics for predicting application performance is pre-
sented. With these methods, the system looks for detecting unexpected behaviors,
usually caused by unanticipated load on shared grid resources. Once the heuris-
tics detect these unexpected execution behaviors, a fuzzy logic-based algorithm is
used to check and decide how to maintain the QoS of each execution. The fuzzy
logic algorithm uses the information monitored from the application execution
sensors and the performance contracts for the application based on an application
signature model to decide what action must be taken.

8.2.1.2 AI planning. Furthermore, we can find AI techniques not only pre-
dicting behaviors or situations but also managing workflows among machines
of a distributed system. These methods are basically AI planning, methods for
planning, and scheduling events using as guide a set of operators and a set of
observations. Some works done by Deelman et al. [4] and Gil et al. [5] show
methods for scheduling jobs on a grid environment generating, for each job,
resource requirements and available resource workflows. These workflows are
searched and used by AI planning methods to schedule the application execution
matching resource requirements with resource availability.

8.2.1.3 Semantic techniques. Another AI approach to improve the man-
agement and adaption of applications is to use semantics. On the basis of the
principles of the semantic representation systems, there are some ideas presented
about ordering grids and clouds toward an architecture in which information and
services are given a well-defined meaning, thus better allowing computers and

220 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

people to work in cooperation. Acting above syntactic or static valuable rules,
by relating systems, resources, and applications, some approaches look for order-
ing the cloud using logical and coherent matchings between user, resource, and
application. These approaches are no more than ideas and research challenges
yet, and there are some skeptics about the viability of semantic processes in high
performance computing (HPC). Although some works and outlines can be found
in the overview done by De Roure et al. [6] and Ejarque et al. [7], exposing the
current research on the ontology-based resource management is shown in this
chapter.

8.2.1.4 Expert systems and genetic algorithms. There are a lot of app-
roaches dedicated to use expert systems and genetic algorithms for self-
configuring systems. All these approaches are not directly oriented to the
management of clouds or distributed systems, but they give the idea of AI
methods for automatically configuring and optimizing a tasks system, such as
the ones by Wolpert et al. [8], Sirlantzis et al. [9], and Rahman et al. [10]. These
methods, combining classifiers with AI methods, can be used as reference for
the management and planning of autonomic systems and clouds.

But AI approaches usually have to be built and validated by experts, or once
a model is found, it is very difficult to renew it, and the search process must
be repeated. Machine learning techniques supply a new vision of the modeling
process, letting us to find these system models without the explicit requirement
of experts and the ability of being able to update the model in a more easy way.

8.2.2 Machine Learning Approaches

Although some AI planning and other AI methods have been created to self-
optimize or self-configure grid and cloud executions, some problems are related
to lack of adaptation, uncertainty of the model, or extreme complexity of the
system to build a model by experts or single patterns. To solve these problems,
one very relevant solution is machine learning, which allows the creation of
decision and classification models of very complex systems from the examples
of the same system, in an easy way to update that models, or being possible
to make a model that is general or specific enough, extracting the knowledge
directly from the system execution and its environment.

Machine learning mines for data, obtaining the relevant information and
attributes from it, creating the model that explains the system, and finally
using the model to make decisions. The machine learning techniques consist,
generally, on collecting a training data set from the system with data composed
of system values and response attributes and creating a model through induction,
able to explain these examples, expecting that new data will fit in.

The machine learning techniques are divided into supervised learning (such
as classification and regression), unsupervised learning (discover the relationship
between the input data), clustering (find similarities on data), and reinforcement
learning (select the best decision from the past experiences and feedback). Here,

INTELLIGENT SELF-MANAGEMENT 221

we discuss briefly about instance-based learning techniques as part of the super-
vised learning and reinforcement learning (RL) as the two most applied group of
techniques in grid and cloud management. Also, feature and example selection
are techniques important in the learning process and also important to understand
how the examined system works.

8.2.2.1 Instance-based learning. Instance-based machine learning, as part
of the supervised learning techniques, allows to predict from a system and its
set of resources and elements information that is often not clear at simple sight,
often fuzzy, and also inaccurate, uncertain, or incomplete. After obtaining this
information, we can use it to create a classifier model or regression model, and
obtain from that information the one required to improve the decision making
process. Then, the model is able to predict or estimate this useful information,
also showing what kind of relation exists between observed data and system
behavior, letting us to understand the system better.

For this prediction process, we need to choose suitable prediction algorithms,
computationally light but able to obtain good results once trained with data
from various workloads. Also, we need to obtain a good training set (a set of
data containing labeled instances from representative executions) and another
test (or validation) set. If, after training, the predictor guesses are close to the
correct values on the test set, we expect that they will also be correct on future
data sets. Figure 8.1 shows the basic schema of a supervised machine learning
process.

Before the cloud, when all the research was based on the grid model, some
methods and solutions were created for grid self-management and adaption of
the system to the applications running on it. For example, some works like [11]
presented a comparison of different machine learning algorithms such nearest-
neighbor, weighted-average, and locally-weighted polynomial regression, upon
the resource managing PUNCH framework, to model and predict application
performances in order to be able to allocate or schedule the application in a grid

Online
unlabeled
dataset

Model
Online

unlabeled
dataset

Example
labeled
dataset

Learning
algorithm

Training
dataset

Data to
predict

creates

Predicted
data

Figure 8.1 Supervised machine learning schema.

222 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

environment. Job and resource scheduling is a problem when expert systems and
policy-based algorithms become expensive or too complex, so we need another
cheaper and more simple system for doing it.

Other works use machine learning on self-management, focusing specifically
on self-healing and fault diagnosis. Detecting failures in resources and applica-
tions, and also the root of failures, has become a very interesting area where
inductive learning methods are also applied. Approaches such the one presented
by Hofer and Fahringer [12] shows an application-specific fault diagnosis based
on indicators, symptoms, and rules. For this approach, two techniques have been
used: a supervised classification to find the reason of the failure and clustering
techniques to find what failures are the result of the same cause. Other works such
as those presented by Zhang et al. [13] focus explicitly on regression functions to
find memory leaks. Also, works by Alonso et al. [14–16] presented a framework
for monitoring a complex web application server and estimate, through learning
and regression techniques, the time until fault of the server caused by resource
leaking, such as memory or CPU. It also proposes a technique for detecting the
root cause component of the fault. All these supervised learning techniques are
usually combined with macropolicies and utility functions, where, depending on
the results, a set of specific decisions are taken in order to adjust the system
according to the prediction. Example given, Poggi et al. [17–19] presented a
framework where, depending on user modeling predictions, machines are set up
or shut down, saving energy by closing as many web servers as possible, keeping
the users predicted as “customers” in the on-line machines.

Thanks to the appearance of the Weka Toolkit [20], several autonomic com-
puting researchers have been able to introduce machine learning into their work
as well as improve them. Wildstrom et al. [21–23] presented an approach for
online hardware reconfiguration using algorithms for rules and decision mak-
ing. Currently, researchers who wish to introduce some ML techniques into
their approaches have the possibility of using that toolkit. With a better research
on machine learning applications, the autonomic computing approaches will be
improved in a better way.

8.2.2.2 Reinforcement learning. Reinforcement learning is the problem
faced by an agent that must learn behavior through trial-and-error interactions in
a dynamic environment [24]. As Kaelbling states, there are two main strategies
for solving reinforcement learning problems: first, to search the space of
behaviors in order to find one that performs well in the environment, by work
in genetic algorithms and genetic programming and second, to use statistical
techniques and dynamic programming methods to estimate the utility of taking
actions in states of the world. While supervised learning involves learning from
labeled examples provided by an external supervisor, in reinforcement learning,
an agent must be able to learn from its own experience.

Current self-management approaches tend to apply the second kind of rein-
forcement techniques, as it is easier to be applied to handle system drifts and
changes. This kind of reinforcement basically consists on defining a function,

INTELLIGENT SELF-MANAGEMENT 223

representing the system goal to be maximized. This goal usually is the ben-
efit obtained by the system expressing all the revenues and costs of it; the
resources or power consumption to be reduced; or any random variable rep-
resenting weighted factors from the system expressing the interests of the system
manager.

The learning process consists on learning what policies or actions must be
applied given the system status, observing the results of applying them, and
modifying the decision maker depending on the observed results. Policies and
actions are basically operations or sets of operations done to elements from the
system. These policies and actions are ranked for each situation or status by
their maximum expected return for the goal function in a determined number of
steps, so the decision maker selects the best ranked action given a specific status,
and depending on the result, the ranking is modified. At long term, the ranks
may converge to an optimal 〈status,action〉, whether the system does not change
dramatically its configuration (Fig 8.2).

The implementation of learning algorithms is based on dynamic programming,
showing the ranking function as a recursive formula, looking for the maximum
return of a function at infinite steps forward. So the evaluation of each 〈status,
action〉 pair could be defined as

Q(s, a) = �s′E[R|s ′, π]P(s ′|s, a),

where s is the status, π is the policy being followed, a is the action being
evaluated, R is the return for the goal function, and s ′ is the each possible status

Status St Status St+1

<s1,ax> → r1x
<s1,ay> → r1y

<s1,az> → r1z
<s2,ax> → r2x

Chosen ai

New action
selected

Reinforce
actions

System

Select next
actions

Observed
reward

System loop

<Status, action>
table/function

Figure 8.2 Reinforcement-learning schema.

224 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

resulting after applying a to s . The probabilities and expectations are trained
by running examples and modified online with each resolution after applying
the selected actions for each state. Specifically, the expectation is trained as a
recursive Bellman equation

E[R|st] = rt + γE[R|st+1],

where the direct reward rt and the future expected reward are weighted depending
on the importance of the immediate results.

In the simplest case, the set of states and actions are discrete, and we can
have a map with each estimation for each state. But as seen in the previous
definition, the 〈status, action〉 space can be incredibly large depending on the
system, as large as the amount of states and actions that can be reached and
performed. This makes the problem of action selection expensive in space and
in time. Thus, it is often interesting to learn the Q(s, a) function using induction
learning techniques, complementing the reinforcement. The expectations can be
replaced by estimations, so Q̂(s, a) function can be trained, acting as a reward
function for each action.

As a simple practical example, let us imagine a system where several actions
can be chosen to be applied given a status, and from scratch, all actions are
equally scored in order to obtain a good result for this status. By choosing the
first random action, the system can check after if the result has been good or
bad, so the score of this action will be modified by raising or degrading it. By
repeating this for some iterations, the scores for each action/status will indicate
what actions have been better rewarded or penalized for each status. At this
point, the system can continue by choosing the most scored actions given a
specific status, as well as continue evaluating them. At long term, the scorings
in a stable system may converge to a stable ranking action/status. More about
the mathematics and basics on reinforcement learning can be found in the works
and tutorials of Kaelbling et al. [24], Sutton and Barto [25], and Bertsekas and
Tsitsiklis [26].

The reinforcement-based algorithms have become recently trendy because of
the potential and promising results on autonomic computing self-management,
as explained by Tesauro et al. [27]. In reinforcement learning based algorithms,
rules and policies can be prioritized and applied depending on the success in
previous executions. As the autonomic computing control loop adjusts all the
systems, the reinforcement learning modules can evaluate applied policies and
decide which ones must be used or avoided in the next iteration. Approaches such
as those proposed by Vienne and Sourrouille [28] use reinforcement learning
to select the rules to be applied for each decision to be taken, having goals
such as a performance level for resources. Other works such as those presented
by Vengerov and Iakovlev [29, 30] and Perez et al. [31] show frameworks for
scheduling resources using reinforcement learning, using as objective function the
optimization of the utility of resources. There are also other works such as the one
presented by Fenson and Howard [32] that show approaches for self-rejuvenation
and self-management functions using these reinforcement learning techniques.

INTRODUCING POWER-AWARE APPROACHES 225

8.2.2.3 Feature and example selection. Feature selection is the process
of, given a huge set of observed data, finding those variables and data that are
really useful from those that only bring noise or are irrelevant. Usually, we can
obtain several data from observing a grid or cloud system. But in order to predict
or estimate a specific interesting value, not all the collected data is useful, and
including this data in the learning process makes it harder in space or in time,
or makes it inaccurate due to noise.

It also happens when applying knowledge to the self-methods, as all the
self-management aspects must use the correct information to work: self-healing
systems must have the correct signals to detect anomalies and predict the causes
and consequences for failures. Self-protection systems must be able to see the
indicators about attacks when attackers are cloaked or use evasion techniques.
And the self-optimization and self-configuring systems must know about the
execution and requirements of applications, as well as utility of the resources in
order to find the best configuration and best performance. The feature selection
methods are in charge of discovering the relevant attributes from all the data
obtained.

Also, there is the example selection process. When finding or training a model,
the examples must be “good” examples that cause minimum noise and are less
redundant as possible. This example selection process is not trivial, as you want
to keep enough examples for your data set to be general enough, or to give
enough support to cases hard to be learned. Blum and Langley [33] described in
their survey the basics of feature and example selection.

Furthermore, some works on self-management used to perform a principal
component analysis (PCA) [34, 35] in order to find the attributes that can differ-
entiate better our examples. PCA is a feature selection technique by itself, but
it can also find the combination of features that are most relevant, and is able
to treat high dimensional data, reducing the complexity without losing much
information. Zheng et al. [36, 37] proposed the utilization of PCA for detecting
and locating anomalies in large-scale clusters. In their approaches, after collect-
ing data and finding the combination of attributes that better differentiate the
collected examples, an outlier detection is done using the cell-based detection
algorithm. Other works such as those by Lakhina et al. [38, 39] use the PCA
method to detect anomalies in network traffic, also using classification techniques
(supervised learning) to identify network anomalies.

8.3 INTRODUCING POWER-AWARE APPROACHES

At this moment, green computing is being introduced into self-management mid-
dleware, adding to these frameworks new advanced management mechanisms to
successfully optimize the resource usage to add energy efficiency as one of the
fundamental parameters in its management. The current main power-saving tech-
niques applied in the cloud and grid environments are related with virtualization
technology, the turning on/off policies, the DVFS, and the hybrid architecture on
data centers.

226 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

These four technical areas are being covered by approaches that include ad hoc
methods, heuristic algorithms, and determined policies, taking into account that
this requires experts in the whole system and changes in the system make these
approaches to require updates. In order to introduce the intelligent management ,
letting the system to configure and adapt to changes easily, machine learning
techniques are starting to be used to improve the previous methods.

8.3.1 Use of Virtualization

Virtualization is one of the key technologies in the cloud that has enabled cost
reduction and easier resource management for service providers. As virtualization
allows to run several processes, jobs, guest operating system (OS), and also VMs
in one or several physical machines or platforms, it makes possible the consoli-
dation of applications, multiplexing them onto physical resources, and supporting
isolation from other applications sharing the same physical resource. Tasks can
be run everywhere and migrated without many handicaps on the base systems,
but VMs can also perform optimizations over the host OS and physical machine.
The cloud and grid infrastructure take advantage from this technology, decou-
pling them from the system software of the underlying resource, and letting the
movement and migration of VMs in order to place them in the most convenient
place.

The main goals of virtualization are to provide a confined environment where
applications can be run, limit hardware resource access and usage or expand it
transparently for the applications, adapt the runtime environment to the appli-
cation, use dedicated or optimized OS mechanisms for each application, and
manage the whole applications and processes running within VMs. Primet et al.
[40] provided a survey on current OS and network virtualization solutions for
grids. The summarized basic aspects are listed in the following.

• OS-Level Approaches . These approaches allow to virtualize a physical server
enabling multiple isolated and secure virtualized servers to run on a single
physical server. No guest OS is used, and applications are run in a specific
view of the only one OS as if they were running alone on the OS. Some
of these approaches are VServer [41], a kernel patch based on partitioning,
using a “security context” inside a UNIX OS, FreeBSD Jail [42], and also
Solaris Containers, OpenVZ, etc.

• Emulators . VMs simulate the complete hardware used by a guest OS.
VMware [43] is a virtualization software for machines based on x86 archi-
tecture, where virtualization works at the processor level, the VM privi-
leged instructions are trapped and virtualized by the VMware process, and
other instructions are directly executed by the host processor. All hardware
resources of the machine are also virtualized. Other solutions are Microsoft
VirtualPC, VirtualBox, QEMU [44], etc.

• OS in User Space. These approaches provide virtualization through the exe-
cution of guest OSs directly in user space. Some approaches are User Mode

INTRODUCING POWER-AWARE APPROACHES 227

Linux [45], which allows launching Linux OS as applications of a host
machine running Linux, as well as coLinux, Adeos, L4Ka-based projects,
etc.

• Paravirtualization . The paravirtualization technique does not necessarily
simulate the hardware but instead offers a special API requiring modifica-
tions to the guest OS. The hardware resources are abstract resources not
necessarily similar to the actual hardware resources of the host machine.
Xen [46] is a VM monitor for x86 architecture, allowing the concurrent
executions of multiple OS while providing resource isolation and execu-
tion confinement between them. Other projects using this paravirtualization
approach are Denali and Trango.

• Hardware-Assisted Virtualization . This virtualization allows to run unmod-
ified guest OS, giving to the VM its own hardware. This is possible thanks
to an increased set of processor instructions provided by Intel VT (IVT
[47]), AMD (AMD Pacifica x86 virtualization [48]), IBM (IBM Advanced
POWER virtualization [49]), and Sun (Sun UltraSPARC T1 hypervisor [50]).

This virtualization technology has become a hot research topic for maximizing
benefits, but it has added another layer of abstraction to the management sys-
tems, preventing or making more complex the conventional energy management
for performing efficiently or correctly in virtual environments. During the past
years, works such as the ones presented by Vogels [51] studied the consolidation
advantages using virtualization while other works such as the ones from Nathuji
et al. [52] have widely explored its advantages from a power efficiency point
of view.

Recent work by Petrucci et al. [53] proposed a dynamic configuration approach
for power optimization in virtualized server clusters and outlined an algorithm
to dynamically manage it. All these techniques, applying consolidation policies,
are mainly focused on a power efficiency strategy, taking into account the cost
of turning on or off the resources, as it is explained in Section 8.3.2. Also, VM
migration and VM placement optimization are studied in the work of Liu et
al. [54] to improve the VM placement and consolidate in a better way. On the
basis of these works, Goiri et al. [55, 56] introduced the SLA-factor into the
self-managing virtualized resource policies. The SLA-driven policies look for
facilitating resource management in service providers, allowing cost reduction
and at the same time the SLA agreed QoS fulfillment.

So virtualization technology has opened a wide research area to explore in
order to optimize cloud and grid management. The capability to isolate jobs inside
VMs, and migrate the VMs along physical machines, permits optimizing task
placement and dynamic scheduling without much overhead. Recently, machine
learning techniques are being applied to help manage virtualized platforms to
decide what VMs must be started and how to schedule them, complementing
information about the system or predicting useful information a priori. Also,
these techniques are able to look for patterns in the behavior of the VMs and
host systems to predict their imminent and long-term behavior, making long-term

228 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

policies more accurate. These approaches are often applied within turning on and
off machines or DVFS, as described in the following section.

8.3.2 Turning On and Off Machines

Another energy-saving technique is to determine when a node should be turned
off to save power consumption or when to turn it on to bring service to the cloud.
These actions can be driven by fixed policies or heuristics, depending on the load
being received at each moment or the load expected in a short-term window time.
For example, first approaches such as the ones presented by Pinheiro et al. [57],
Chase et al. [58], and Elnozahy et al. [59] applied turning on and off mechanisms
for power management, as well as by Chen et al. [60] that includes predictive
techniques in a proactive and also reactive automated control.

Goiri et al. [56, 61] showed that a decrease in the number of online machines
obviously assures a decrease in the consumed power and also the system
is often unable to bring service given an increase in load, so a compromise
between online machines and energy saving must be found. In their works, this
decision is driven by means of two thresholds: the minimum working nodes
threshold λmin, which determines when the provider can start to turn off nodes,
and the maximum working nodes threshold λmax, which determines when the
provider must turn on new nodes. After modeling specific loads and machine
consumptions, using different kinds of scheduling and consolidation techniques,
the influence of the turning on/off thresholds by showing the SLA and the
power consumption can be evaluated. Adequate thresholds can be obtained (this
time empirically) in order to decide how many physical machines are needed
online, and the rest can be shut down.

On the basis of the same works, Berral et al. [62] proposed a framework
that provides an intelligent consolidation methodology using different techniques
such as the turning on/off machines, power-aware consolidation algorithms, and
machine learning techniques to deal with uncertain information while maximiz-
ing performance. Using the information from system behaviors, the machine
learning approach used a learned model to predict power consumption levels,
CPU loads, and SLA timings and to improve scheduling decisions. The exper-
iments performed using grid workloads and a cloud environment demonstrate
how consolidation-aware policies give a better energy efficiency than noncon-
solidating ones, and also, the machine learning model responses are much better
with respect to power consumption when the information obtained from users
and tasks is not uniformly accurate.

This turn-on and off technique is also applied by the approach of Kamitsos
et al. [63], which sets unused hosts in a low consumption state to save energy.
In their approach a Bellman’s function based on dynamic programming and
recursive methodology, is used to decide when to set into sleeping status those
hosts that are not needed, maintaining the other submitted jobs in the online hosts.

But turning on and off is not limited to machines. Components and resources
can also be started up and shut down. Policies can decide whether to set on
or off the full machine or a specific component, and Tan et al. [64] showed a

INTRODUCING POWER-AWARE APPROACHES 229

framework for controlling the system power manager using reinforcement learn-
ing algorithms. In this case, the learner uses a Q-learning algorithm, a popular
algorithm originally designed to find policies in Markovian decision processes.

Summarizing, the main point in the strategy of turning on and off devices,
machines, or resources is to determine at each time what to switch on and off
in order to optimize our goals. Optimal policies select at the best time those
elements that are necessary for the good performance of the system and maintain
the rest in a shutdown or low consumption status. These selection policies can
be improved or optimized by reinforcement learning techniques by adjusting
the number of elements that are not necessary in the system at each time, and
inductive learning techniques can be used to expect the amount of resources to
be used a priori in order to plan on/off device schedulers.

8.3.3 Dynamic Voltage and Frequency Scaling

Another currently applied technique to obtain power efficiency is the Dynamic
Voltage and Frequency Scaling (DVFS). The DVFS techniques allow the reduc-
tion of voltage and frequency, providing substantial saving in power at the cost of
slower program execution. Current microprocessors and other kind of resources
allow the power management by DVFS, reducing the voltage and frequency of
the given devices and allowing the application of policies in order to provide
saving in power at the cost of not offering the full capabilities of the resource
when not needed. As Chen [60] stated in his work, new power-saving policies,
such as DVFS or turning off idle servers, can increase hardware problems and the
problem of meeting SLAs in reduced environments. This can be solved by adding
a smarter scheduling policy to dynamically turn off idle machines to reduce the
overall consumption.

Earlier works on DVFS were mainly focused on power saving on mobile
devices while preserving QoS and performance. The first approaches on power
management used turning server machines on and off, one of the firsts to combine
turning on and off with dynamic voltage scaling in data centers and was studied
by Elnozahy et al. [59], exploring the use of DVFS to respond to changes in
server demands. This work and the work of Sharma et al. [65] have referred to
applying these techniques for server applications, and from here on, other works
have developed this idea toward refining and detailing the scheduling procedure
in order to decide when and how much voltage and frequency scaling should be
applied at each moment.

Reinforcement learning is also used to drive DVFS policies as shown in the
works of Tesauro and Kephart et al. [66, 67]. Their goal was to let the system learn
the actions to be performed with a trial-and-error method, making decisions by
selecting the expected best action and checking the results, allowing to adjust the
ranking for the action. In this case, actions control the CPU frequency, adjusting
it to the optimal trade-off between electric consumption and response time for
transactional jobs running on the given data center.

So tuning the processor voltage and frequency has become an effective method
to reduce the power consumption while tasks can be delayed in time, or the

230 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

required performance is under the system capabilities. The main challenge here is
to know when it is possible to scale up and down voltage/frequency, what policies
are optimal to decide when and how much to do so, and what trade-off must
be permitted between power consumption and QoS. Current techniques using
heuristics and fixed policies are being improved using reinforcement learning
methods, finding the optimal policies that assure the lowest power consumption
without compromising the performance and service requirements.

8.3.4 Hybrid Nodes and Data Centers

Finally, another power-saving technique is to design data centers and machines as
a hybrid architecture, combining high performance and energy-efficient elements,
to switch between one another in the order of the load requirements. Turning on
and off resources or modifying their consumption, by switching resource usage
between the ones designed for energy saving or high performance, could be a
good option depending on the situation or requirement of the load. Combining
low power designed processors with high performance processors or devices in
the same data center provides the system a new degree of freedom, so that there
is no need to modify the elements in the system but to use those elements that
are more prepared to our energy or performance needs.

This combination of different kind of resources has been tackled in local hosts
in some approaches such as the ones presented by Chun et al. [68], who pro-
posed a hybrid architecture that combines the selective usage of processors with
different power consumptions and performances in a single host in order to apply
local energy-saving policies only when allowed by performance. Also, approaches
presented by Nathuji et al. [69] state that a good approach for saving energy is
mixing low power systems and high performance ones in the same data center.

Machine learning techniques applied to the utilization of hybrid data centers
are still in process, as the current state-of-the-art research applies the knowledge
of induction learning works for improving autonomic computing approaches.
Again, the works of Goiri et al. [70, 71] have included learned functions [62] as
management parameters. Also the techniques presented in Section 8.2, referring to
search policies applying reinforcement learning [27, 66], can be applied in order
to decide whether to use a determined kind of resource or another. In conclusion,
the use of hybrid systems is giving new elements to intelligent decision makers,
so new solutions are able to optimize, thus regulating the properties of individual
elements in order to adapt them to loads and scenarios or instead to decide to
select specific elements to fit the specific scenario.

8.4 EXPERIENCES OF APPLYING ML ON POWER-AWARE
SELF-MANAGEMENT

After looking at all the works and publications referring to the new techniques
improving power-aware self-managed systems using data mining and machine

EXPERIENCES OF APPLYING ML ON POWER-AWARE SELF-MANAGEMENT 231

learning, some experiences on applying them to specific cases of study are shown
here. These cases of study refer to the conclusions obtained from some works
mentioned before [56, 62], where a cloud is scheduled and managed in a power-
aware way, using learning techniques over some of the previously explained
power-saving techniques.

8.4.1 Case Study Approach

The techniques proposed for this case study are consolidation techniques,
reducing power consumption by scheduling virtualized environments, all without
degrading their SLAs in excess. This scheduling policy must consolidate
workloads preserving the QoS of the tasks inside a virtual machine (VM) each
one, agreed on the SLA and taking into account virtualization overheads such
as VM creation, checkpointing, and migration. All of this can be achieved by
unifying different provider requirements in addition to power consumption,
namely, reliability and dynamic SLA enforcement (be able to recover from an
SLA violation during the execution).

This is done by deciding the best location for executing a new job depending on
the resources it requires in order to fulfill its SLA, derived from the information
of the system, including job execution and node status. The proposed policy
periodically calculates whether to move jobs in order to improve global system
utility. This approach decides when and where to create VMs containing jobs,
migrate them, and start up or shut down physical machines, also being aware
that machines in a cluster can have different properties so the data center can be
heterogeneous.

In this section, the whole proposed policy is summarized and evaluation
and improvements obtained in a first implementation, including virtualization
overheads and power consumption, are shown. It is compared against common
policies in a simulated environment that models a virtualized data center, mainly
focusing in this occasion on CPU and memory as a resource. This first proof of
concept is based on HPC jobs and uses deadlines as QoS metric in order to define
the SLA constraints. After evaluating the different power-aware techniques, the
concept of ML is introduced in order to improve the consolidation mechanisms
by predicting information about SLAs before applying the selected schedule.

8.4.2 Scheduling and Power Trade-Off

The scheduling policy consists on finding, on each system status change the opti-
mal combination of <host,VM> to use as input information: the hardware and
software requirements of the VM, the amount of resources required, the resources
offered by the host machine (i.e., those that are available), the energy consump-
tion of the physical machine, the user SLA constraints, and the reliability of the
host. It gives to each machine a dynamic score depending on these parameters
and solves the allocation of each VM on the best machine, taking into account
all those different factors.

232 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

A scheduling round is started when a new VM enters the system, a VM
finishes its execution, a violation in the SLA is detected, or the reliability of a
machine changes. Then, the best <host,VM> combination is found by mapping
all the tentative VM allocations in a scoring matrix filled with the benefit of each
VM temptatively hold in each host machine. Each score indicates the utility (or
benefit) of holding a VM in a host by aggregating all the penalties related to
migration, leaving a machine empty or violating the SLA or any other needed
constraint. At this point, a hill-climbing search algorithm [72] finds the set of
movements optimizing the <host,VM> matrix. And finally, the system performs
the set of operations decided by the new schedule (creation, migration, etc.).
Each value in this scoring matrix represents the score (penalization) of hosting a
VM in a specific host, including the costs involved due to virtualization, power
consumption, reliability, and dynamic SLA enforcement. For example, those hosts
that cannot hold a VM, due to insufficient free resources or hardware/software
constraints, have an ∞ value; those hosts that have jobs that can be consolidated
are penalized in order to force the scheduler to empty it; and the opposite happens
with the nearly full hosts that can allocate jobs from nearly empty hosts. In this
case, those hosts that have the lowest value for a VM are supposed to be the
most suitable.

As it has been already presented, consolidation is applied in order to turn off
unneeded machines (also referred as nodes). Nevertheless, a too aggressive node-
turning-off policy will result in not offering enough resources to execute tasks,
while a passive one will have bigger power consumption. This trade-off depends
on the λmin and λmax thresholds. The effect of these two thresholds has been tested
by executing the grid workload on top of the simulated data center using the score-
based (SB) policy, which is the one that makes a more aggressive consolidation.
This allows evaluating the influence of the turning on/off thresholds by showing
the client satisfaction and the power consumption, respectively.

Figure 8.3 shows that waiting for the nodes to reach a high utilization before
adding new nodes (high λmax) makes the power consumption smaller. In the same
manner, the earlier the system shut downs a machine (high λmin), the smaller
the power consumption is. It demonstrates how turning on and off machines in
a dynamic way can be used to dramatically increase the energy efficiency in
a consolidated data center. On the other hand, as shown in Figure 8.4, client
satisfaction decreases when the turn on/off mechanism is more aggressive and it
shuts down more machines (in order to increase energy efficiency). Therefore,
this is a trade-off between the fulfillment of the SLAs and the reduction of the
power consumption, whose resolution will eventually depend on the provider
interests. For instance, if the provider is having a high client satisfaction, the
provider could decide to reduce it slightly while keeping the client between the
limits of satisfaction, allowing a greater power reduction by letting resources
unused and shutting down them.

Fortunately, average threshold values give a balanced trade-off between energy
and QoS. Experimentally, we found that our environment’s best values are λmin =
30% and λmax = 90% to ensure almost complete fulfillment of the SLAs while

EXPERIENCES OF APPLYING ML ON POWER-AWARE SELF-MANAGEMENT 233

10

90

70

50

30

10

020304050607080

50

500
1000
1500
2000
2500
3000
3500

100

150

200

250

300

Power
consumption

(kw)

Relation between Power consumption and different turn
on/off thresholds (lmax, lmin)

lmin

lmax

Figure 8.3 Power consumption using different turn on/off thresholds.

88
84
80

92
96

100

1020304050607080

80

84

88

92

96

100

90

70

50

30

10

0
lmin

lmax

Client
satisfaction

Relation between Client Satisfaction and different turn
on/off thresholds (lmax, lmin)

Figure 8.4 Client satisfaction using different turn on/off thresholds.

getting substantial power reduction. A next step would be to dynamically adjust
these thresholds, which is part of our current and future work.

8.4.3 Experimenting with Power-Aware Techniques

The experimental environment set for this case study consists of the simulation
of a whole virtualized data center with 100 nodes using the EEFSIM, a cloud
simulator designed following the procedure in [73] but focused on the energy
consumption and on the CPU power scheduling among VMs. The simulator loads

234 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

a workload trace, simulates the execution on several machines with different a
configuration for each one, and generates the output results using different global
scheduling policies. In addition, these machines can be dynamically turned on/off.
The simulation takes into account both the physical machine boot time and power
consumption and the VM creation and migration power consumption.

The data center is configured to have different types of nodes according to
their virtualization overheads, basically different times for creating and migrating
VMs. The presented approach intends to take benefit of consolidation in large
virtualized data centers executing HPC jobs. For this reason, the evaluation of this
case study has been performed using a grid workload, which has been obtained
from Grid5000 [74] on the week that starts on Monday, October 1, 2007. The set
of policies is evaluated according to different metrics including number of used
nodes, CPU usage, power consumption, and SLA fulfillment. The consolidation
of the system is reflected in the average number of working nodes (those that
are executing a VM), online nodes (those that are turned on) and the power
consumption.

Once the parameters to turn nodes on/off have been set up, according to
the number of loaded nodes, a first basic experimentation is run. The energy
efficiency and SLA fulfillment is compared with four static scheduling algorithms
that do not use migration: a random scheduler (RD), which assigns the tasks
Random; a Round-Robin scheduler (RR), which assigns a task to each available
node; a backfilling strategy (BF), which tries to fill the nodes as much as possible;
and a basic version of the presented SB policy (SB0), which just takes into
account hardware and software requirements (this time, without migrations).

The results presented in Table 8.1 show the power consumption (Pwr) and
different metrics such as the average number of nodes that are actually work-
ing (Work), the average number of nodes running (ON), the client satisfaction
(S), and the delay. It shows that nonconsolidating policies such as Random and
RR give poor energy efficiency while violating a significant amount of SLAs:
they give the worst results on both criteria. BF gets better SLA fulfillment with
substantially lower cost, as it uses fewer nodes. Finally, the SB policy, which
works with no penalties on virtualization overheads, behaves very similar to the
BF policy.

Using the nonmigrative approach, the SB policy is tested with different config-
urations (SB1 = SB0 + Pvirt, SB2 = SB1 + Pconc) to test the impact of consid-
ering virtualization overheads (creation and concurrency). Table 8.2 shows that
SB1, which adds VM creation overheads, makes a better use of the resources

TABLE 8.1 Scheduling Results of Policies Without Migration

Work/ON CPU, h Pwr, kW S, % Delay, %

RD 24.3 / 41.7 14597.2 1952.1 33.2 474.5
RR 23.5 / 51.9 11844.2 2321.0 60.4 338.4
BF 10.1 / 22.2 6055.3 1007.3 98.0 10.4
SB0 9.9 / 22.4 6055.3 1016.3 98.2 10.4

EXPERIENCES OF APPLYING ML ON POWER-AWARE SELF-MANAGEMENT 235

TABLE 8.2 Scheduling Results of Score-Based Policies Without Migration

λ Work/ON CPU Pwr S Delay

SB0 30–90 9.85/22.4 6055.3 1016.3 98.2 10.4
SB1 30–90 10.2/22.2 6055.3 1006.7 97.9 10.7
SB2 30–90 10.2/23.0 6068.5 1038.5 99.2 8.8
SB2 40–90 10.4/19.0 6055.1 880.5 98.1 10.2

TABLE 8.3 Scheduling Results of Policies With Migration

λ Work/ON CPU Pwr S Delay Mig

DBF 30–90 9.7/21.3 6056.0 970.6 98.1 12.9 124
SB 30–90 9.7/21.0 6055.8 956.4 99.1 9.0 87
SB 40–90 9.7/18.3 6055.8 850.2 98.4 9.9 87

because it takes into account the time to create VMs and selects better nodes to
perform the same. In addition, it gets worse by SLA fulfillment than solving it
using the SB2, taking care of concurrency overheads, which also causes a small
increment on the power consumption. This is because considering the cost of
concurrent creation of VMs reduces the consolidation ratio but gets better SLA
fulfillment since it produces faster VM creation.

Even though it implies a power consumption increment regarding the basic
configuration, the client satisfaction has been increased and allows the provider
to make a more aggressive turn on/off policy resulting in higher consolidation
and lower power consumption.

Table 8.3 shows the results of the SB scheduler when introducing the capa-
bility to migrate VMs in order to get a better consolidation, applying a dynamic
backfilling (DBF) policy. This applies BF and migrates VMs between nodes in
order to provide a higher consolidation level and the SB proposal using all the
penalties, including the migration capability.

Results for DBF showed a small improvement in power efficiency with respect
to nonmigration variation while getting much better consolidation, caused by the
overheads introduced by migrating VMs, and the SLA fulfillment is maintained
at a medium level as in the nonmigration approach. On the other hand, the SB
policy takes virtualization overheads such as creation and migration into account,
which makes it to get more client satisfaction. And as in the previous experiment,
to give a measure of the improvement in client satisfaction terms, a similar SLA
fulfillment target for DBF and the best of the SB configurations are set, getting
more aggressive turn on/off parameters of λmin = 40% and λmax = 90%. Using
this configuration, a reduction in the data-center power consumption of 15% with
regard to BF is obtained and of 12% when compared with the dynamic variant.
These experiments demonstrate how the SB proposal gets the best power con-
sumption and SLA fulfillment, as it takes into account the migration overheads.

236 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

TABLE 8.4 Score-Based Scheduling Results With Different Costs

Ce Cf Work/ON CPU Pwr S Delay Mig

0 40 10.4/22.9 6055.2 1036.4 99.3 8.6 0
20 40 9.7/21.0 6055.8 956.4 99.1 9.0 87
60 100 9.3/22.0 6057.8 998.8 97.7 11.2 432

One of the advantages of the power-aware SB policy is that it can be easily
configured according to the provider’s requirements. In this experiment, some
variants of the policy are shown: without penalizing empty hosts, using typical
parameters penalizing empty hosts and rewarding near full host, and using more
aggressive parameters for consolidation.

Table 8.4 shows the results of tweaking this parameter. The first variant does
not penalize empty hosts, which implies lower consolidation and worst power
performance, and also does not migrate any VMs since the fillable reward is
not worthwhile. The second variant uses the values used in the previous exper-
iments, which include the empty host penalization and gets better consolidation
while maintaining similar client satisfaction as it performs an accurate number of
migrations. Finally, the third variant has been set up with aggressive parameters,
getting the best consolidation in terms of working nodes, but getting poor energy
efficiency and lower SLA fulfillment, which is mainly because it rewards the
occupation and penalties too much empty hosts, which implies a big amount of
migrations.

8.4.4 Applying Machine Learning

Applying consolidation mechanisms such as the dynamic backfilling described
earlier helps to improve power consumption, but often this can be improved or
easily done by applying knowledge-based techniques such as machine learning.
A first approach focused on learning about the behavior of a job being placed in
a specific target physical machine is discussed here.

The machine learning-aided policy implements a dynamic BF scheduler, using
the information provided directly by the user and using as decision maker the
results of performance and power consumption estimators. When having a pair
<host,VM> in the schedule, the impact the job will cause in the potential host
machine is predicted using context information. So the scheduler has better
confidence on the fact that the selected jobs schedule will not degrade their
performance violating SLAs.

When a new job arrives, the system will try to allocate it, so the candidate
moves will be like “move VM v from its initial temporary host to host h”. Per-
forming a sample run the scheduler can obtain for each combination of VMs
and hosts the performance result of this combination, joint with the information
of the VM (size, requirements, resources used) and the information of the host
(capacity, resources available, information about the other jobs running on it).

EXPERIENCES OF APPLYING ML ON POWER-AWARE SELF-MANAGEMENT 237

From here on, using machine learning algorithms, a model can be set up, learning
the relation of these elements with the response variable (the resulting perfor-
mance of the job). This model will help the decision maker in predicting values
of expected performance for a given combination before the schedule is applied.

Running some experimentation over the presented scheduling problem the
behavior and performance of different scheduling policies are evaluated using
three different workloads (an HPC, a transactional workload, and an heteroge-
neous one) and using the turn on/off thresholds λmin = 30% and λmax = 60%.
Also, some scheduling algorithms are evaluated for comparing them with the
power-aware one: Random and RR do not use any user-provided information
about the VMs and do not consolidate. For BF and DBF, the user provides for
each VM a figure indicating which percentage of a CPU capacity should suffice to
satisfy the VM SLAs. The algorithms trust this figure as totally reliable and there-
fore will make decisions that may fit the SLAs very tightly, thus saving power.
The algorithm applying machine learning does not use the user-provided informa-
tion but only uses information about the online requirements of the VM in order
to expect the SLA future performance. The results are presented in Table 8.5.

The results obtained using the grid workload show that nonconsolidating poli-
cies such as Random and RR give a poor energy efficiency while violating some
SLAs. BF and DBF fulfill all SLAs with substantially lower cost, and machine
learning performs almost perfectly with respect to SLAs (as we have seen that

TABLE 8.5 Scheduling Results

Work ON CPU usage, h Power, kW SLA, %

Grid workload

RD 16.51 40.76 6017.85 1671.16 88.38
RR 16.11 41.37 5954.91 1696.66 85.99
BF 10.18 27.10 6022.34 1141.65 100.00
DBF 9.91 26.46 6104.33 1118.86 100.00
Machine learning DBF 15.04 37.92 6022.27 1574.78 99.69

Service workload

RD 218.46 400.00 75336.88 19784.38 100.00
RR 290.99 400.00 78419.97 19761.54 100.00
BF 108.79 352.88 59792.09 16257.26 100.00
DBF 108.79 352.88 59748.10 16229.22 100.00
Machine learning DBF 99.61 270.50 61379.38 13673.71 100.00

Heterogeneous workload

RD 224.08 400.00 82137.27 19763.63 88.53
RR 260.66 400.00 84432.96 19713.72 94.20
BF 110.85 330.19 65894.46 16304.38 99.50
DBF 111.03 329.07 66020.58 16214.49 99.59
Machine learning DBF 124.20 307.89 68554.01 15110.33 98.63

238 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

predictions for SLA fulfillment are very accurate). The reason is that the user-
provided figures for the tasks are very close to the real ones (and the load quite
steady), so the BF algorithms will take many decisions that will not violate any
SLA but that look too risky to machine learning, which pays a high price in
consumption for its caution.

On the service workload, the machine learning scheduler is much better with
respect to energy consumption. Note that in this workload, all the schedulers
executed all the tasks, so all SLAs were fulfilled. The workload has a very variable
CPU usage. This means that the user-provided estimation about the CPU to be
used for the given jobs will be a large overestimation for large periods (while it
was very tight on the grid workload), and power will be unnecessarily wasted.
The machine learning scheduler, as being more conservative, estimates better the
SLA fulfillment, and so it is able to reduce the power consumption just to the
required.

Finally, the results obtained using the heterogeneous workload are, as
expected, a mix of the two previous workloads. In this case, the overall SLA
fulfillment by the ML is worse by about 1%, but its overall power consumption
is better by about 10%.

8.4.5 Conclusions from the Experiments

These works and experimentations applying power-aware mechanisms intro-
ducing machine learning are looking to provide a vertical and intelligent con-
solidation methodology to deal with uncertain information, keeping in mind
performance and power consumption. And the results obtained indicated that
significant improvements can be achieved using machine learning models to pre-
dict schedules a priori and decide the movements and operations to be done
within scheduling functions.

The experiments using the grid workload demonstrate how non-consolidation
policies result in poor energy efficiency compared to consolidation-aware poli-
cies such as the BF and scoring policies. Also, the machine learning method is
close enough to these models that use external information with respect to SLA
fulfillment (performance) and much better with respect to power consumption
when the information provided by the users is not uniformly accurate, or the
information is more variable.

8.5 CONCLUSIONS ON INTELLIGENT POWER-AWARE
SELF-MANAGEMENT

As discussed in this chapter, data-center power-aware management techniques
are mainly focused on the autonomic computing field, so power optimization is
done automatically by middleware software in order to deal with the big growth
of the IT infrastructure and the cloud. Furthermore, this automated control is not
just having refined policies, as the systems usually change, requiring the need of

CONCLUSIONS ON INTELLIGENT POWER-AWARE SELF-MANAGEMENT 239

self-adaption. While autonomic computing properties have several techniques to
update their status, the most useful and currently applied techniques are data min-
ing and machine learning. These learning methods not only can model the system
with good accuracy from examples but also let adapt the model to changes easily.

From the four power-saving strategies presented in this chapter (virtualization,
turning on/off machines, DVFS, and hybrid architecture), recent approaches have
started to apply knowledge-based systems, improving the techniques or allowing
to apply them all together. Instance-based learning can help to complement inex-
istent or uncertain data when dealing with observed data, and also, it can find new
data or discover hidden variables from the system that can be relevant for deter-
mining the behavior of the resources, the clients, or any other element of the cloud
or data center. Furthermore, reinforcement learning techniques are being applied
to decide changes in the system policies, so at each step in the system loop the
learner can observe how good was the previously applied action and then priori-
tize again the actions and modify its policies. Also feature and example selection,
with techniques such as PCA, are being applied to identify which information
obtained from the system is useful, erase outliers and not correct examples, and
find the important attributes that influence most of the system.

In the case of virtualization, most machine learning techniques are dedicated to
predict the system status before and after each creation, migration, or modification
of VMs. Estimating a priori the benefit of realizing a VM operation can reduce
the number of useless operations or drawbacks after operating. Consolidation is
applied as the principal technique when virtualizing, so estimating and predicting
the correct level of consolidation helps to find the optimal power-saving schedule
in the system.

The policies based on turning machines on and off tend to apply reinforcement
learning and dynamic programming formulas, mainly because deciding when
to turn needed or unused machines on or off is an easy policy to learn from
executions. The same happens with DVFS, where resources and devices are
regulated using reinforcement learning too, so finding good policies in order to
adjust levels of power or processor frequency in an optimal way can be achieved
by trial and error during executions and is also a very adaptive technique.

Finally, the construction and usage of hybrid architecture allow the manager
to decide what kind of resources to use in each moment. If self-adaptive man-
agement is applied using techniques such as load prediction, RL learned policies
and a priori data obtainment, the decision maker has some help to find the
most suitable resource scheduling, evaluating not only the load but also the kind
of resources to be used, always using power consumption as one of the most
important parameters.

To conclude this chapter, there are many works applying knowledge and learn-
ing techniques in self-management, but there is more to do so that traditional
decision makers can evolve into new ones that are able to detect the relevant infor-
mation to describe a system, adapt the decision rules when the system changes or
when new elements enter into it, or use the experience and learn to predict future
states of the system and act in consequence. There are several useful works on

240 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

machine learning and data mining awaiting to be applied in cloud and data-center
management situations, and there are many works in self-management awaiting
to be improved and upgraded using new knowledge and learning methods.

REFERENCES

1. Koomey J. Estimating regional power consumption by servers: A technical note;
2007.

2. Vraalsen F. Performance contracts: Predicting and monitoring grid application behav-
ior; 2001.

3. Fahringer T. Automatic performance prediction of parallel programs; 1996.

4. Deelman E, Blythe J, Gil Y, Kesselman C. Mapping abstract complex workflows
onto grid environments; 2004.

5. Gil Y, Deelman E, Blythe J, Kesselman C, Tangmunarunkit H. Artificial intelligence
and grids: workflow planning and beyond; 2004.

6. Shadbolt NR De Roure D, Jennings NR. The semantic grid: past, present, and future;
2005.

7. Ejarque J, de Palol M, Goiri I, Juliã F, Guitart J, Badia R, Torres J. Exploiting
semantics and virtualization for sla-driven resource allocation in service providers;
2010.

8. Wolpert DH, Wheeler KR, Tumer K. Collective intelligence for control of distributed
dynamical systems; 1999.

9. Sirlantzis K, Fairhurst MC, Hoque S. Genetic algorithms for multi-classifier system
configuration: A case study in character recognition. In: MCS ’01: Proceedings of the
2nd International Workshop on Multiple Classifier Systems. London: Springer-Verlag;
2001. pp. 99–108.

10. Rahman AFR, Fairhurst MC, Hoque S. Novel approaches to optimized self-
configuration in high performance multiple-expert classifiers. In: IWFHR ’02: Pro-
ceedings of the 8th International Workshop on Frontiers in Handwriting Recognition
(IWFHR’02). Washington (DC): IEEE Computer Society; 2002. p. 189.

11. Kapadia NH, Fortes JAB, Brodley CE. Predictive application-performance modeling
in a computational grid environment; 1999.

12. Hofer J, Fahringer T. Grid application fault diagnosis using wrapper services and
machine learning. In: ICSOC ’07: Proceedings of the 5th International Confer-
ence on Service-Oriented Computing. Berlin, Heidelberg: Springer-Verlag; 2007.
pp. 233–244.

13. Zhang Q, Cherkasova L, Mi N, Smirni E. A regression-based analytic model for
capacity planning of multi-tier applications. Cluster Comput 2008;11(3):197–211.

14. Alonso J, Torres J, Silva LM, Griffith R, Kaiser G. Towards self-adaptable monitor-
ing framework for self-healing. Technical Report TR-0150, Institute on Architectural
issues: scalability, dependability, adaptability, CoreGRID - Network of Excellence;
2008 July.

15. Alonso J, Berral JL, Gavaldà R, Torres J. Predicting web application crashes using
machine learning. In: Submitted to ACM/IFIP/USENIX 10th International Middle-
ware Conference; 2009 Nov; Urbana Champaign (IL).

REFERENCES 241

16. Alonso J, Torres J, Gavalda R. Predicting web server crashes: A case study in compar-
ing prediction algorithms. In: ICAS 2009: Proceedings of the International Conference
on Autonomous Systems; April 20–25, 2009. Valencia, Spain.

17. Poggi N, Moreno T, Berral JL, Gavaldà R, Torres J. Web customer modeling for
automated session prioritization on high traffic sites. In: UM ’07: Proceedings of the
11th International Conference on User Modeling. Berlin, Heidelberg: Springer-Verlag;
2007. pp. 450–454.

18. Moreno T, Poggi N, Berral JL, Gavaldà R, Torres J. Policy-based autonomous bid-
ding for overload management in ecommerce websites. In: Proceedings of the Group
Decision and Negotiation 2007. Springer-Verlag; Montreal, Canada; 14-1 of May,
2007; pp. 162–166.

19. Poggi N, Moreno T, Berral JL, Gavaldı́ R, Torres J. Self-adaptive utility-based web
session management. Comput Netw 2009;53(10):1712–1721.

20. Witten Ian H., Frank E., Hall Mark A.: Data Mining: Practical Machine Learning
Tools and Techniques (Third Edition). Morgan Kaufmann; January 2011; 629 pages;
ISBN 978-0-12-374856-0.

21. Wildstrom J, Witchel E, Mooney RJ. Towards self-configuring hardware for dis-
tributed computer systems. In: ICAC ’05: Proceedings of the 2nd International
Conference on Automatic Computing. Washington (DC): IEEE Computer Society;
2005. pp. 241–249.

22. Wildstrom J, Stone P, Witchel E, Dahlin M. Machine learning for on-line hard-
ware reconfiguration. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence; Hyderabad, India; 2007. pp. 1113–1118.

23. Wildstrom J, Stone P, Witchel E. Autonomous return on investment analysis of
additional processing resources. In: ICAC ’07: Proceedings of the 4th International
Conference on Autonomic Computing. Jacksonville, Florida, USA; June 11–15, 2007;
IEEE Computer Society; 2007. p. 15.

24. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif
Intell Res 1996;4:237–285.

25. Sutton RS, Barto AG. Reinforcement learning: an introduction (Adaptive Computation
and Machine Learning). The MIT Press; Massachusetts, USA; 1998.

26. Bertsekas DP, Tsitsiklis JN. Neuro-Dynamic Programming (Optimization and Neural
Computation Series, 3). Athena Scientific; 1996 May.

27. Tesauro G, Jong NK, Das R, Bennani MN. On the use of hybrid reinforcement
learning for autonomic resource allocation. Cluster Comput 2007;10(3):287–299.

28. Vienne P, Sourrouille J-L. A middleware for autonomic qos management based on
learning; 2005.

29. Vengerov D, Iakovlev N. A reinforcement learning framework for dynamic resource
allocation: First results. In: ICAC ’05: Proceedings of the 2nd International Confer-
ence on Automatic Computing. Washington (DC): IEEE Computer Society; 2005.
pp. 339–340.

30. Vengerov D. A reinforcement learning framework for online data migration in hier-
archical storage systems. J Supercomput 2008;43(1):1–19.

31. Perez J, Germain-Renaud C, Kégl B, Loomis C. Utility-based reinforcement learning
for reactive grids. In: ICAC ’08: Proceedings of the 2008 International Confer-
ence on Autonomic Computing. Washington (DC): IEEE Computer Society; 2008.
pp. 205–206.

242 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

32. Fenson E, Howard R. Reinforcement learning for autonomic network repair. In:
ICAC ’04: Proceedings of the 1st International Conference on Autonomic Computing.
Washington (DC): IEEE Computer Society; 2004. pp. 284–285.

33. Blum AL, Langley P. Selection of relevant features and examples in machine learning.
Artif Intell 1997;97(1–2):245–271.

34. Duda RO, Hart PE, Stork DG. Pattern Classification . 2nd ed. Wiley-Interscience;
New York, USA; 2000.

35. Smith LI. A tutorial on principal components analysis; 2002.

36. Zheng AX, Lloyd J, Brewer E. Failure diagnosis using decision trees. In:
ICAC ’04: Proceedings of the 1st International Conference on Autonomic Computing.
Washington (DC): IEEE Computer Society; 2004. pp. 36–43.

37. Zheng Z, Li Y, Lan Z. Anomaly localization in large-scale clusters. In: 2007
IEEE International Conference on Cluster Computing; Texas, USA; 2007 Sept. pp.
322–330.

38. Lakhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions.
SIGCOMM Comput Commun Rev 2005;35(4):217–228.

39. Lakhina A, Crovella M, Diot C. Diagnosing network-wide traffic anomalies; 2004.

40. Vicat-Blanc Primet P, Gelas J-P, Mornard O, Mon Divakaran D, Bozonnet P, Jan
M, Roca V, Giraud L. State of the art of os and network virtualization solutions for
grids. Technical report, INRIA, September 2007. “Delivrable #1: HIPCAL ANR-06-
CIS-005”.

41. Linux Vserver. Linux vserver. Available at http://linux-vserver.org/Paper; April 2012.

42. The FreeBSD Project. The freebsd documentation project; 2007.

43. VMware Inc. Vmware. Available at http://www.vmware.com/; April 2012.

44. Bellard F. Qemu, a fast and portable dynamic translator. In: ATEC ’05: Proceedings
of the Annual Conference on USENIX Annual Technical Conference. Berkeley (CA):
USENIX Association; 2005. pp. 41–41.

45. Hoxer H, Buchacker K, Sieh V. Implementing a user mode linux with minimal
changes from original kernel. In: Proceedings of the 2002 International Linux System
Technology Conference; Cologne, Germany; 2002. pp. 72–82.

46. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A. Xen and the art of virtualization. In: SOSP ’03: Proceedings of the
19th ACM Symposium on Operating Systems Principles. New York: ACM; 2003.
pp. 164–177.

47. Intel. Intel virtualization technologies. Available at http://www.intel.com/technology/
virtualization/; April 2012.

48. AMD. Pacifica x86 virtualization. Available at http://enterprise.amd.com/us-en/AMD-
Business/Business-Solutions/Consolidation/Virtualization.aspx; April 2012.

49. IBM. IBM advanced power virtualization. Available at http://www-03.ibm.com/
systems/p/apv/f; April 2012.

50. Sun Microsystems. Sun ultrasparc t1 hypervisor. Available at http://opensparc-
t1.sunsource.net/specs/Hypervisor-api-current-draft.pdf; April 2012.

51. Vogels W. Beyond server consolidation. Queue 2008;6(1):20–26.

52. Nathuji R, Schwan K, Somani A, Joshi Y. Vpm tokens: virtual machine-aware power
budgeting in datacenters. Cluster Comput 2009;12(2):189–203.

REFERENCES 243

53. Petrucci V, Loques O, Mossé D. A dynamic configuration model for power-efficient
virtualized server clusters. In: 11th Brazillian Workshop on Real-Time and Embedded
Systems (WTR); 2009 May 25; Recife, Brazil.

54. Liu L, Wang H, Liu X, Jin X, He WB, Wang QB, Chen Y. GreenCloud: a new
architecture for green data center. In: 6th International Conference on Autonomic
Computing and Communications, Industry Session; 2009 June 15–19. Barcelona,
Spain: ACM; 2009. pp. 29–38.

55. Goiri I, Julià F, Ejarque J, De Palol M, Badia RM, Guitart J, Torres J. Introducing
virtual execution environments for application lifecycle management and SLA-driven
resource distribution within service providers. In: Proceedings of the 8th IEEE Inter-
national Symposium on Network Computing and Applications (NCA’09); 2009 July
9–11; Cambridge (MA). pp. 211–218.

56. Goiri I, Julià F, Nou R, Berral J, Guitart J, Torres J. Energy-aware scheduling in
virtualized datacenters. In: Proceedings of the 12th IEEE International Conference on
Cluster Computing (Cluster 2010); 2010 Sept 20–24; Heraklion, Crete, Greece.

57. Pinheiro E, Bianchini R, Carrera EV, Heath T. Load balancing and unbalancing for
power and performance in cluster-based systems. In: Workshop on Compilers and
Operating Systems for Low Power, Volume 180. Citeseer; 2001. pp. 182–195.

58. Chase JS, Anderson DC, Thakar PN, Vahdat AM, Doyle RP. Managing energy and
server resources in hosting centers. SIGOPS Oper Syst Rev 2001;35(5):103–116.

59. Elnozahy E, Kistler M, Rajamony R. Energy-efficient server clusters. In: Falsafi B,
Vijaykumar T, editors. Volume 2325, Power-Aware Computer Systems, Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer; 2003. pp. 179–197.

60. Chen Y, Das A, Qin W, Sivasubramaniam A, Wang Q, Gautam N. Managing server
energy and operational costs in hosting centers. ACM SIGMETRICS Perform Eval
Rev 2005;33(1):303–314.

61. Fitó JO, Goiri I, Guitart J. SLA-driven elastic cloud hosting provider. In: Proceed-
ings of the 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing (PDP’10); 2010 Feb 17–19; Pisa, Italy. pp. 111–118.

62. Berral J, Goiri I, Nou R, Julià F, Guitart J, Gavalda R, Torres J. Towards energy-aware
scheduling in data centers using machine learning. In: 1st International Conference
on Energy-Efficient Computing and Networking (eEnergy’10), University of Passau;
2010 Apr 13–15 Germany; 2010. pp. 215–224.

63. Kamitsos I, Andrew L, Kim H, Chiang M. Optimal sleep patterns for serving delay-
tolerant jobs. In: 1st International Conference on Energy-Efficient Computing and
Networking (eEnergy’10), University of Passau; 2010 Apr 13–15; Germany.

64. Tan Y, Liu W, Qiu Q. Adaptive power management using reinforcement learning. In:
ICCAD ’09: Proceedings of the 2009 International Conference on Computer-Aided
Design. New York: ACM; 2009. pp. 461–467.

65. Sharma V, Thomas A, Abdelzaher T, Skadron K, Lu Z. Power-aware qos management
in web servers. In: RTSS ’03: Proceedings of the 24th IEEE International Real-Time
Systems Symposium. Washington (DC): IEEE Computer Society; 2003. p. 63.

66. Tesauro G, Das R, Chan H, Kephart JO, Lefurgy C, Levine DW, Rawson F. Manag-
ing power consumption and performance of computing systems using reinforcement
learning. In: Advances in Neural Information Processing Systems 20; Vancouver,
Canada; 2008.

244 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING

67. Kephart JO, Chan H, Das R, Levine DW, Tesauro G, Rawson F, Lefurgy C. Coordinat-
ing multiple autonomic managers to achieve specified power-performance tradeoffs.
In: ICAC ’07: Proceedings of the 4th International Conference on Autonomic Com-
puting. Washington (DC): IEEE Computer Society; 2007. p. 24.

68. Chun B, Iannaccone G, Iannaccone G, Katz R, Gunho L, Niccolini L. An energy
case for hybrid datacenters. In: Workshop on Power Aware Computing and Systems
(HotPower’09); 2009 Oct 10; Big Sky (MT).

69. Nathuji R, Isci C, Gorbatov E. Exploiting platform heterogeneity for power efficient
data centers. In: Proceedings of the IEEE International Conference on Autonomic
Computing (ICAC’07); 2007 Jun 11–15; Jacksonville (FL).

70. Goiri I, Fitó O, Julià F, Nou R, Berral J, Guitart J, Torres J. Multifaceted Resource
Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers.
In: Proceedings of the 11th ACM/IEEE International Conference on Grid Computing
(Grid 2010); 2010 Oct 25–29; Brussels, Belgium.

71. Goiri I, Guitart J, Torres J. Characterizing cloud federation for enhancing Providers’
profit. In: Proceedings of the 3rd International conference on Cloud Computing
(CLOUD 2010); 2010 Jul 5–10; Miami (FL). pp. 123–130.

72. Russell S, Norvig P. Artificial intelligence: a modern approach. Pearson Education;
2003.

73. Nou R, Kounev S, Julià F, Torres J. Autonomic QoS Control in Enterprise Grid
Environments using Online Simulation. J Syst Softw 2009;82(3):486–502.

74. The Grid Workloads Archive. 2009. Available at http://gwa.ewi.tudelft.nl; April 2012.

